James M. Roberts

Learn More
The generation of glutamatergic neurons by stem and progenitor cells is a complex process involving the tight coordination of multiple cellular activities, including cell cycle exit, initiation of neuronal differentiation and cell migration. The mechanisms that integrate these different events into a coherent program are not well understood. Here we show(More)
Cell-cell contact and TGF-beta can arrest the cell cycle in G1. Mv1Lu mink epithelial cells arrested by either mechanism are incapable of assembling active complexes containing the G1 cyclin, cyclin E, and its catalytic subunit, Cdk2. These growth inhibitory signals block Cdk2 activation by raising the threshold level of cyclin E necessary to activate Cdk2.(More)
First identified as cell cycle inhibitors mediating the growth inhibitory cues of upstream signaling pathways, the cyclin-CDK inhibitors of the Cip/Kip family p21Cip1, p27Kip1, and p57Kip2 have emerged as multifaceted proteins with functions beyond cell cycle regulation. In addition to regulating the cell cycle, Cip/Kip proteins play important roles in(More)
In mammals there are two known groups of CDK-inhibitors of the cyclin D–CDK4/CDK6 kinases (Xiong et defined by a conserved amino-terminal domain that is Seattle, Washington 98104 sufficient for both stable binding to cyclin–CDK com-‡ Department of Pathology plexes and inhibition of CDK protein kinase activity. The Harvard Medical School Kip/Cip proteins can(More)
Entry into, progression through, and exit from the G1 phase of the mammalian cell cycle in response to extracellular mitogenic cues are presumed to be governed by cyclin-dependent kinases (Cdks) regulated by the D-type and E-type cyclins. Studies performed over more than a decade have supported the view that these holoenzymes are important, if not required,(More)
The tumor suppressor p27(Kip1) is an inhibitor of cyclin/cyclin-dependent kinase (CDK) complexes and plays a crucial role in cell cycle regulation. However, p27(Kip1) also has cell cycle-independent functions. Indeed, we find that p27(Kip1) regulates cell migration, as p27(Kip1)-null fibroblasts exhibit a dramatic decrease in motility compared with(More)
The widely prevailing view that the cyclin-dependent kinase inhibitors (CKIs) are solely negative regulators of cyclin-dependent kinases (CDKs) is challenged here by observations that normal up-regulation of cyclin D- CDK4 in mitogen-stimulated fibroblasts depends redundantly upon p21(Cip1) and p27(Kip1). Primary mouse embryonic fibroblasts that lack genes(More)