James M. Hogle

Learn More
The crystal structure of Dps, a DNA-binding protein from starved E. coli that protects DMA from oxidative damage, has been solved at 1.6 Å resolution. The Dps monomer has essentially the same fold as ferritin, which forms a 24-mer with 432 symmetry, a hollow core and pores at the three-fold axes. Dps forms a dodecamer with 23 (tetrahedral) point group(More)
Upon attachment to susceptible cells, poliovirus and a number of other picornaviruses undergo conformational transitions which result in changes in antigenicity, increased protease sensitivity, the loss of the internal capsid protein VP4, and a loss of the ability to attach to cells. These conformationally altered particles have been characterized by using(More)
The three-dimensional structure of poliovirus has been determined at 2.9 A resolution by x-ray crystallographic methods. Each of the three major capsid proteins (VP1, VP2, and VP3) contains a "core" consisting of an eight-stranded antiparallel beta barrel with two flanking helices. The arrangement of beta strands and helices is structurally similar and(More)
The three-dimensional structure of the Sabin strain of type 3 poliovirus has been determined at 2.4 A resolution. Significant structural differences with the Mahoney strain of type 1 poliovirus are confined to loops and terminal extensions of the capsid proteins, occur in all of the major antigenic sites of the virion and typically involve insertions,(More)
Recent studies have shown that chemically synthesized small peptides can induce antibodies that often react with intact proteins regardless of their position in the folded molecule. These findings are difficult to explain in view of the experimental and theoretical data which suggest that in the absence of forces provided by the folded protein, small(More)
The structure of turnip crinkle virus has been determined at 3.2 A resolution, using the electron density of tomato bushy stunt virus as a starting point for phase refinement by non-crystallographic symmetry. The structures are very closely related, especially in the subunit arm and S domain, where only small insertions and deletions and small co-ordinate(More)
Structural studies of polio- and closely related viruses have provided a series of snapshots along their cell entry pathways. Based on the structures and related kinetic, biochemical, and genetic studies, we have proposed a model for the cell entry pathway for polio- and closely related viruses. In this model a maturation cleavage of a capsid protein(More)
Antisera were raised against peptide sequences that are normally internal in the poliovirus virion. These antisera contain neutralizing activity, but this neutralizing activity is dependent on coincubation of the virus and antisera at 37 degrees C. Immunoprecipitation analyses demonstrate that the neutralization is due to exposure of these normally internal(More)
Protein methylation at arginines is ubiquitous in eukaryotes and affects signal transduction, gene expression and protein sorting. Hmt1/Rmt1, the major arginine methyltransferase in yeast, catalyzes methylation of arginine residues in several mRNA-binding proteins and facilitates their export from the nucleus. We now report the crystal structure of Hmt1 at(More)
Viruses initiate infection by transferring their genetic material across a cellular membrane and into the appropriate compartment of the cell. The mechanisms by which animal viruses, especially nonenveloped viruses, deliver their genomes are only poorly understood. This is due in part to technical difficulties involved in direct visualization of viral gene(More)