Learn More
A quantitative model is presented that describes the formation of auditory brainstem responses (ABRs) to tone pulses, clicks, and rising chirps as a function of stimulation level. The model computes the convolution of the instantaneous discharge rates using the "humanized" nonlinear auditory-nerve model of Zilany and Bruce [J. Acoust. Soc. Am. 122, 402-417(More)
Two objective measures of human cochlear tuning, using stimulus-frequency otoacoustic emissions (SFOAE), have been proposed. One measure used SFOAE phase-gradient delay and the other two-tone suppression (2TS) tuning curves. Here, it is hypothesized that the two measures lead to different frequency functions in the same listener. Two experiments were(More)
This study investigates temporal suppression of click-evoked otoacoustic emissions (CEOAEs), occurring when a suppressor-click is presented close in time to a test-click (e.g. 0-8ms). Various temporal suppression methods for examining temporal changes in cochlear compression were evaluated and measured here for seven subjects, both for short- and(More)
Different attempts have been made to directly measure frequency specific basilar membrane (BM) delays in animals, e.g., laser velocimetry of BM vibrations and auditory nerve fiber recordings. The present study uses otoacoustic emissions (OAEs) and auditory brainstem responses (ABRs) to estimate BM delay non-invasively in normal-hearing humans. Tone bursts(More)
The click-evoked otoacoustic emission (CEOAE) level-curve grows linearly for clicks below 40-60 dB and saturates for higher inputs. This study investigates dynamic (i.e., time-dependent) features of the CEOAE level-curve by presenting a suppressor-click less than 8 ms before the test-click. An alteration of the CEOAE level-curve, designated here as temporal(More)
Respiratory disease is the leading cause of death in the UK. Methods for assessing pulmonary function and chest wall movement are essential for accurate diagnosis, as well as monitoring response to treatment, operative procedures and rehabilitation. Despite this, there is a lack of low-cost devices for rapid assessment. Spirometry is used to measure air(More)
This study investigates whether time-dependent compression mechanisms in the cochlea are necessary to explain dynamic properties of otoacoustic emissions (OAEs). Dynamic properties of click-evoked OAEs (CEOAEs) have been observed in temporal suppression; the effect where the CEOAE magnitude is reduced when a click is presented less than 10 ms before the(More)
A comprehensive set of results from double click suppression experiments on otoacoustic emissions (OAEs) have been presented by Hine and Thornton [1] and Kapadia and Lutman [2]. They found that suppression of a click-evoked otoacoustic emission (CEOAE) varied with the timing and level of a suppressor-click presented close in time to the test-click. Maximal(More)
  • 1