Learn More
Advanced (long-chain) fuels and chemicals are generated from short-chain metabolic intermediates through pathways that require carbon-chain elongation. The condensation reactions mediating this carbon-carbon bond formation can be catalysed by enzymes from the thiolase superfamily, including β-ketoacyl-acyl-carrier protein (ACP) synthases, polyketide(More)
BACKGROUND Due to its abundance and low-price, glycerol has become an attractive carbon source for the industrial production of value-added fuels and chemicals. This work reports the engineering of E. coli for the efficient conversion of glycerol into L-lactic acid (L-lactate). RESULTS Escherichia coli strains have previously been metabolically engineered(More)
Glycerol has attracted the attention of scientific and industrial communities due to its generation in bulk quantities as a byproduct of biofuel industries. With the rapid growth of these industries in recent years, glycerol is frequently treated as a very low-value byproduct or even a waste product with a disposal cost associated to it. Glycerol is not(More)
The recently engineered reversal of the β-oxidation cycle has been proposed as a potential platform for the efficient synthesis of longer chain (C ≥ 4) fuels and chemicals. Here, we demonstrate the utility of this platform for the synthesis of medium-chain length (C6–C10) products through the manipulation of key components of the pathway. Deletion of(More)
  • 1