James M. Barbaree

Learn More
Campy-Cefex, a modification of Campy-Cefex, modified charcoal cefoperazone deoxycholate (mCCDA), Karmali, CAMPY, and Campy-Line agars were evaluated for their efficiency to isolate and enumerate Campylobacter spp. from poultry carcass rinses. Campy-Cefex and its modification produced the best results but were statistically similar to CAMPY, mCCDA, and(More)
Mass-sensitive, magnetoelastic resonance sensors have a characteristic resonant frequency that can be determined by monitoring the magnetic flux emitted by the sensor in response to an applied, time varying, magnetic field. This magnetostrictive platform has a unique advantage over conventional sensor platforms in that measurement is wireless and remote. A(More)
The specific and selective detection of Salmonella typhymurium based on the use of a polyclonal antibody immobilized by the Langmuir-Blodgett method on the surface of a quartz crystal acoustic wave device was demonstrated in liquid samples. These biosensors were selective to S. typhymurium in the presence of large concentrations of Escherichia coli O157:H7.(More)
We selected from landscape phage library probes that bind preferentially Salmonella typhimurium cells compared with other Enterobacteriaceae. The specificity of the phage probes for S. typhimurium was analyzed by the phage-capture test, the enzyme-linked immunosorbent assay (ELISA), and the precipitation test. Interaction of representative probes with S.(More)
Legionella pneumophila organisms are able to infect and multiply within the ciliated protozoan Tetrahymena pyriformis. This ability may be associated with virulence, because an attenuated strain of L. pneumophila fails to multiply within this protozoan, whereas a virulent strain increases 10,000-fold in number when coincubated with T. pyriformis. Seventeen(More)
In this article, a phage-based magnetoelastic sensor for the detection of Salmonella typhimurium is reported. Filamentous bacteriophage specific to S. typhimurium was used as a biorecognition element in order to ensure specific and selective binding of bacteria onto the sensor surface. Phage was immobilized onto the surface of the sensors by physical(More)
Campylobacter fetus is recognized as a human and animal pathogen. The isolation and differentiation of C. fetus in diagnostic laboratories is hindered by its relatively slow growth and lack of distinguishing biochemical characteristics. We developed a fast, reliable PCR assay that specifically amplifies a 554-bp segment of the 16S rDNA from C. fetus.(More)
At the site of a legionellosis outbreak, amoebae and two ciliates, Tetrahymena sp. and Cyclidium sp., were isolated from cooling-tower water containing Legionella pneumophila. The Tetrahymena sp. and the amoebae repeatedly showed the ability to support intracellular multiplication of L. pneumophila. Both were isolated from cooling towers specifically(More)
Proof-in-concept biosensors were prepared for the rapid detection of Salmonella typhimurium in solution, based on affinity-selected filamentous phage prepared as probes physically adsorbed to piezoelectric transducers. Quantitative deposition studies indicated that approximately 3 x 10(10)phage particles/cm(2) could be irreversibly adsorbed for 1 h at room(More)
The rapid and sensitive detection of Salmonella typhymurium based on the use of a polyclonal antibody immobilized by the Langmuir-Blodgett method on the surface of a quartz crystal acoustic wave device was demonstrated. The binding of bacteria to the surface changed the crystal resonance parameters; these were quantified by the output voltage of the sensor(More)