James L. Tangorra

Learn More
The vestibular system has often been studied by perturbing the position of the head. This study was conducted to identify the dynamic properties of the head-neck system in response to horizontal plane perturbations. A quasilinear approach was used to quantify the dynamics of the head-neck system at different levels of static torque. An operating point was(More)
As a result of years of research on the comparative biomechanics and physiology of moving through water, biologists and engineers have made considerable progress in understanding how animals moving underwater use their muscles to power movement, in describing body and appendage motion during propulsion, and in conducting experimental and computational(More)
—Fish are remarkable in their ability to maneuver and to control their body position. This ability is the result of the coordinated movement of fins which extend from the body and form control surfaces that can create and vector forces in 3-D. We have embarked on a research program designed to develop a maneuvering propulsor for unmanned undersea vehicles(More)
We designed a robotic fish caudal fin with six individually moveable fin rays based on the tail of the bluegill sunfish, Lepomis macrochirus. Previous fish robotic tail designs have loosely resembled the caudal fin of fishes, but have not incorporated key biomechanical components such as fin rays that can be controlled to generate complex tail conformations(More)
A biorobotic pectoral fin was developed and used to study how the flexural rigidities of fin rays within a highly deformable fish fin affect the fin's propulsive forces. The design of the biorobotic fin was based on a detailed analysis of the pectoral fin of the bluegill sunfish (Lepomis macrochirus). The biorobotic fin was made to execute the kinematics(More)
A comprehensive understanding of the control of flexible fins is fundamental to engineering underwater vehicles that perform like fish, since it is the fins that produce forces which control the fish's motion. However, little is known about the fin's sensory system or about how fish use sensory information to modulate the fin and to control propulsive(More)
Bony fish swim with a level of agility that is unmatched in human-developed systems. This is due, in part, to the ability of the fish to carefully control hydrodynamic forces through the active modulation of the fins' kinematics and mechanical properties. To better understand how fish produce and control forces, biorobotic models of the bluegill sunfish's(More)
—A series of biorobotic fins has been developed based on the pectoral fin of the bluegill sunfish. These robotic fins model physical properties of the biological fin, and execute kinematics derived from sunfish motions that were identified to be most responsible for thrust. When the physical properties of the robotic fin are tuned appropriately to operating(More)
A method was developed to identify the linear, system level dynamics of the horizontal, angular vestibulo-ocular reflex (VOR) as it stabilized vision during head-free tracking of a visual target. Small amplitude, broad spectrum, stochastic torque perturbations were applied to the head while the subject tracked an unpredictable, moving target with active(More)