James L. Kenyon

Learn More
We have studied the effects of the potassium-blocking agent 4-aminopyridine (4-AP) on the action potential and membrane currents of the sheep cardiac Purkinje fiber. 4-AP slowed the rate of phase 1 repolarization and shifted the plateau of the action potential to less negative potentials. In the presence of 4-AP, the substitution of sodium methylsulfate or(More)
The rapid repolarization during phase 1 of the action potential of sheep cardiac purkinje fibers has been attributed to a time- and voltage-dependent chloride current. In part, this conclusion was based on experiments that showed a substantial slowing of phase 1 when larger, presumably impermeant, anions were substituted for chloride in tyrode's solution.(More)
To define the roles of the alpha- and beta-ryanodine receptor (RyR) (sarcoplasmic reticulum Ca2+ release channel) isoforms expressed in chicken skeletal muscles, we investigated the ion channel properties of these proteins in lipid bilayers. alpha- and beta RyRs embody Ca2+ channels with similar conductances (792, 453, and 118 pS for K+, Cs+ and Ca2+) and(More)
Epoxyeicosatrienoic acids (EETs) are arachidonic acid metabolites of cytochrome P450 monooxygenase, which are released from endothelial cells and dilate arteries. Dilation seems to be caused by activation of large-conductance Ca2+ activated K+ channels (BK(Ca)) leading to membrane hyperpolarization. Previous studies suggest that EETs activate BK(Ca)(More)
Cyclic AMP (cAMP)-dependent chloride channels modulate changes in resting membrane potential and action potential duration in response to autonomic stimulation in heart. A growing body of evidence suggests that there are marked similarities in the properties of the cAMP-dependent chloride channels in heart and cystic fibrosis transmembrane regulator (CFTR)(More)
Recent whole-cell studies have shown that Ca(2+)-activated Cl- currents contribute to the Ca(2+)-dependent 4-aminopyridine-insensitive component of the transient outward current and to the arrhythmogenic transient inward current in rabbit and canine cardiac cells. These Cl(-)-sensitive currents are activated by Ca2+ release from the sarcoplasmic reticulum(More)
1. We used intracellular microelectrodes to record the membrane potential (Vm) of intact murine colonic smooth muscle. Electrical activity consisted of spike complexes separated by quiescent periods (Vm approximately -60 mV). The spike complexes consisted of about a dozen action potentials of approximately 30 mV amplitude. Tetraethylammonium (TEA, 1-10 mM)(More)
The aim of the present study was to provide a mechanistic insight into how phosphatase activity influences calcium-activated chloride channels in rabbit pulmonary artery myocytes. Calcium-dependent Cl- currents (I(ClCa)) were evoked by pipette solutions containing concentrations between 20 and 1000 nM Ca2+ and the calcium and voltage dependence was(More)
1. Two components of voltage-gated, inward currents were observed from murine colonic myocytes. One component had properties of L-type Ca(2+) currents and was inhibited by nicardipine (5 x 10(-7) M). A second component did not 'run down' during dialysis and was resistant to nicardipine (up to 10(-6) M). The nicardipine-insensitive current was activated by(More)
This paper describes a theory of the kinetic analysis of patch-clamp data. We assume that channel gating is a Markov process that can be described by a model consisting of n kinetic states and n(n - 1) rate constants at each voltage, and that patch-clamp data describe the occupancy of x different conductance levels over time. In general, all the kinetic(More)