Learn More
We have studied the effects of the potassium-blocking agent 4-aminopyridine (4-AP) on the action potential and membrane currents of the sheep cardiac Purkinje fiber. 4-AP slowed the rate of phase 1 repolarization and shifted the plateau of the action potential to less negative potentials. In the presence of 4-AP, the substitution of sodium methylsulfate or(More)
Epoxyeicosatrienoic acids (EETs) are arachidonic acid metabolites of cytochrome P450 monooxygenase, which are released from endothelial cells and dilate arteries. Dilation seems to be caused by activation of large-conductance Ca2+ activated K+ channels (BK(Ca)) leading to membrane hyperpolarization. Previous studies suggest that EETs activate BK(Ca)(More)
The rapid repolarization during phase 1 of the action potential of sheep cardiac purkinje fibers has been attributed to a time- and voltage-dependent chloride current. In part, this conclusion was based on experiments that showed a substantial slowing of phase 1 when larger, presumably impermeant, anions were substituted for chloride in tyrode's solution.(More)
Angiotensin II (Ang II) has powerful modulatory actions on cardiovascular function that are mediated by specific receptors located on neurons within the hypothalamus and brain stem. Incubation of neuronal cocultures of rat hypothalamus and brain stem with Ang II elicits an Ang II type 1 (AT1) receptor-mediated inhibition of total outward K+ current that(More)
In order to learn about the endogenous Ca2+-buffering in the cytoplasm of chick dorsal root ganglion (DRG) neurons and the distance separating the ryanodine receptor Ca2+ release channels (RyRs) from the plasma membrane, we monitored the amplitude and time course of Ca2+-activated Cl- currents (I(ClCa)) in protocols that manipulated Ca2+-buffering.(More)
1. Located within the gastrointestinal (GI) musculature are networks of cells known as interstitial cells of Cajal (ICC). ICC are associated with several functions including pacemaker activity that generates electrical slow waves and neurotransmission regulating GI motility. In this study we identified a voltage-dependent K(+) channel (Kv1.1) expressed in(More)
To test whether ryanodine blocks the release of calcium from the sarcoplasmic reticulum in cardiac muscle, we examined its effects on the aftercontractions and transient depolarizations or transient inward currents developed by guinea pig papillary muscles and voltage-clamped calf cardiac Purkinje fibers in potassium-free solutions. Ryanodine (0.1-1.0(More)
The aim of the present study was to provide a mechanistic insight into how phosphatase activity influences calcium-activated chloride channels in rabbit pulmonary artery myocytes. Calcium-dependent Cl- currents (I(ClCa)) were evoked by pipette solutions containing concentrations between 20 and 1000 nM Ca2+ and the calcium and voltage dependence was(More)
In voltage clamp studies of cardiac Purkinje fibers, a large early outward current is consistently observed during depolarizations to voltages more positive than -20 mV. After the outward peak of the current, the total membrane current declines slowly. Dudel et al. (1967. Pfluegers Arch. Eur. J. Physiol. 294:197--212) reduced the extracellular chloride(More)
This paper describes a theory of the kinetic analysis of patch-clamp data. We assume that channel gating is a Markov process that can be described by a model consisting of n kinetic states and n(n - 1) rate constants at each voltage, and that patch-clamp data describe the occupancy of x different conductance levels over time. In general, all the kinetic(More)