Learn More
The massive visual input from the eye to the brain requires selective processing of some visual information at the expense of other information, a process referred to as visual attention. Increases in the responses of visual neurons with attention have been extensively studied along the visual processing streams in monkey cerebral cortex, from primary(More)
Change blindness is the failure to see large changes in a visual scene that occur simultaneously with a global visual transient. Such visual transients might be brief blanks between visual scenes or the blurs caused by rapid or saccadic eye movements between successive fixations. Shifting attention to the site of the change counters this "blindness" by(More)
Active vision requires the integration of information coming from the retina with that generated internally within the brain, especially by saccadic eye movements. Just as visual information reaches cortex via the lateral geniculate nucleus of the thalamus, this internal information reaches the cerebral cortex through other higher-order nuclei of the(More)
A critical technique for understanding how neuronal activity contributes to behavior is determining whether perturbing it changes behavior. The advent of optogenetic techniques allows the immediately reversible alteration of neuronal activity in contrast to chemical approaches lasting minutes to hours. Modification of behavior using optogenetics has had(More)
The premotor theory of visual spatial attention proposes that the same brain activity that prepares for saccades to one part of the visual field also facilitates visual processing at that same region of the visual field. Strong support comes from improvements in performance by electrical stimulation of presaccadic areas, including the frontal eye field and(More)
The major pathway for visual information reaching cerebral cortex is through the lateral geniculate nucleus (LGN) of the thalamus. Acting on this vital relay is another thalamic nucleus, the thalamic reticular nucleus (TRN). This nucleus receives topographically organized collaterals from both thalamus and cortex and sends similarly organized projections(More)
Advances in functional neuromuscular stimulation (FNS) have increased the need for nerve cuff designs that can control multiple motor functions through selective stimulation of selected populations of axons. This selectivity has proved to be difficult to achieve. Recent experiments suggest that it is possible to slowly reshape peripheral nerve without(More)
Despite saccades changing the image on the retina several times per second, we still perceive a stable visual world. A possible mechanism underlying this stability is that an internal retinotopic map is updated with each saccade, with the location of objects being compared before and after the saccade. Psychophysical experiments have shown that humans(More)
A cascade of neuronal signals precedes each saccadic eye movement to targets in the visual scene. In the cerebral cortex, this neuronal processing culminates in the frontal eye field (FEF), where neurons have bursts of activity before the saccade. This presaccadic activity is typically considered to drive downstream activity in the intermediate layers of(More)
In the monkey frontal eye field (FEF), the sensitivity of some neurons to visual stimulation changes just before a saccade. Sensitivity shifts from the spatial location of its current receptive field (RF) to the location of that field after the saccade is completed (the future field, FF). These shifting RFs are thought to contribute to the stability of(More)