James J. Szykman

Learn More
BACKGROUND In June 2008, burning peat deposits produced haze and air pollution far in excess of National Ambient Air Quality Standards, encroaching on rural communities of eastern North Carolina. Although the association of mortality and morbidity with exposure to urban air pollution is well established, the health effects associated with exposure to(More)
[1] As is typical in the Northern Hemisphere spring, during 20 April to 21 May 2003, significant biomass burning smoke from Central America was transported to the southeastern United States (SEUS). A coupled aerosol, radiation, and meteorology model that is built upon the heritage of the Regional Atmospheric Modeling System (RAMS), having newly developed(More)
A pilot study is conducted to illustrate the potential of using radiance data collected by the Day/Night Band (DNB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polarorbiting Partnership (S-NPP) satellite for particulate matter (PM) air quality monitoring at night. The study focuses on the moonless and cloudless nights(More)
This study reports on the performance of electrochemical-based low-cost sensors and their use in a community application. CairClip sensors were collocated with federal reference and equivalent methods and operated in a network of sites by citizen scientists (community members) in Houston, Texas and Denver, Colorado, under the umbrella of the NASA-led(More)
We improve the accuracy of daily ground-level fine particulate matter concentrations (PM(2.5)) derived from satellite observations (MODIS and MISR) of aerosol optical depth (AOD) and chemical transport model (GEOS-Chem) calculations of the relationship between AOD and PM(2.5). This improvement is achieved by (1) applying climatological ground-based regional(More)
Total-column nitrogen dioxide (NO2) data collected by a ground-based suntracking spectrometer system (Pandora) and an photolytic-converter-based in-situ instrument J Atmos Chem (2015) 72:261–286 DOI 10.1007/s10874-013-9257-6 Jim Szykman is currently assigned to NASA Langley Research Center, Hampton, VA 23681, USA T. Knepp (*) Science Systems and(More)
A system has been developed to combine remote sensing and ground-based measurements of aerosol concentration and aerosol light scattering parameters into a three-dimensional view of the atmosphere over the United States. Utilizing passive and active remote sensors from space and the ground, the system provides tools to visualize particulate air pollution in(More)
  • 1