Learn More
Neonatal mice resist the lethal effect of Waglerin-1. Because Waglerin-1 blocks the nicotinic acetylcholine receptor of mature end-plates, the appearance of lethality may result from the epsilon- for gamma-subunit substitution. In support of this hypothesis, adult knockout (KO) mice lacking the gene coding for the epsilon-subunit resist the lethal effect of(More)
The peptide N-acetyl-CRATKML-amide is an effective inhibitor of type A botulinum neurotoxin (BoNT A) protease activity [Schmidt et al., FEBS Lett. 435 (1998) 61-64]. To improve inhibitor binding, the peptide was modified by replacing cysteine with other sulfhydryl-containing compounds. Ten peptides were synthesized. One peptide adapted the structure of(More)
The ultimate molecular action of botulinum neurotoxin (BoNT) is a Zn-dependent endoproteolytic activity on one of the three SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins. There are seven serotypes (A-G) of BoNT having distinct cleavage sites on the SNARE substrates. The proteolytic activity is located on the(More)
The seven botulinum neurotoxins (BoNTs) are zinc metalloproteases that cleave neuronal proteins involved in neurotransmitter release and are among the most toxic natural products known. High-throughput BoNT assays are needed for use in antibotulinum drug discovery and to characterize BoNT protease activities. Compared to other proteases, BoNTs exhibit(More)
Botulinum neurotoxins (BoNT) are zinc metalloproteases that cleave and inactivate cellular proteins essential for neurotransmitter release. Because the paralytic effect of BoNT is a consequence of its enzymatic activity, selective inhibitors may be useful as drugs or as tools for further research. To expedite inhibitor discovery, we developed(More)
The virulent spore-forming bacterium Bacillus anthracis secretes anthrax toxin composed of protective antigen (PA), lethal factor (LF) and edema factor (EF). LF is a Zn-dependent metalloprotease that inactivates key signaling molecules, such as mitogen-activated protein kinase kinases (MAPKK), to ultimately cause cell death. We report here the(More)
Type A botulinum neurotoxin catalyzed the hydrolysis of synthetic peptides based on the sequence of the 25-kD synaptosomal protein SNAP-25. In each peptide, the toxin cleaved at a single glutaminyl-arginine bond corresponding to residues 197 and 198 of SNAP-25, confirming earlier reports on the enzymatic specificity of the toxin in synaptosomal(More)
Botulinum neurotoxins (BoNTs) are among the most lethal biological substances to have been weaponized and are listed as biodefense category A agents. Currently, no small molecule (non-peptidic) therapeutics exist to counter this threat; hence, identifying and developing compounds that inhibit BoNTs is a high priority. In the present study, a high-throughput(More)
An efficient research strategy integrating empirically guided, structure-based modeling and chemoinformatics was used to discover potent small molecule inhibitors of the botulinum neurotoxin serotype A light chain. First, a modeled binding mode for inhibitor 2-mercapto-3-phenylpropionyl-RATKML (K(i) = 330 nM) was generated, and required the use of a(More)
Botulinum neurotoxins (BoNTs) are the most potent of the known biological toxins, and consequently are listed as category A biowarfare agents. Currently, the only treatments against BoNTs include preventative antitoxins and long-term supportive care. Consequently, there is an urgent need for therapeutics to counter these enzymes--post exposure. In a(More)