James J. Kuffner

Learn More
LaValle & Kuffner [] present an application of a randomized technique to the problem of kinodynamic planning. Their algorithm constructs Rapidly-exploring Random Trees (RRTs) in a high dimensional state space that encompasses both first order constraints resulting from the physically-based system dynamics as well as global kinematic constraints due to(More)
A simple and efficient randomized algorithm is presented for solving single-query path planning problems in high-dimensional configuration spaces. The method works by incrementally building two Rapidly-exploring Random Trees (RRTs) rooted at the start and the goal configurations. The trees each explore space around them and also advance towards each other(More)
This paper combines grasp analysis and manipulation planning techniques to perform fast grasp planning in complex scenes. In much previous work on grasping, the object being grasped is assumed to be the only object in the environment. Hence the grasp quality metrics and grasping strategies developed do not perform well when the object is close to obstacles(More)
We present the Constrained Bi-directional Rapidly-Exploring Random Tree (CBiRRT) algorithm for planning paths in configuration spaces with multiple constraints. This algorithm provides a general framework for handling a variety of constraints in manipulation planning including torque limits, constraints on the pose of an object held by a robot, and(More)
Despite the recent achievements in stable dynamic walking for many humanoid robots, relatively little navigation autonomy has been achieved. In particular, the ability to autonomously select foot placement positions to avoid obstacles while walking is an important step towards improved navigation autonomy for humanoids. We present a footstep planner for the(More)
The rapidly-exploring random tree (RRT) algorithm has found widespread use in the field of robot motion planning because it provides a single-shot, probabilistically complete planning method which generalizes well to a variety of problem domains. We present the multipartite RRT (MP-RRT), an RRT variant which supports planning in unknown or dynamic(More)
We present an algorithm for planning safe navigation strategies for biped robots moving in obstaclecluttered environments. From a discrete set of plausible statically-stable, single-step motions, a forward dynamic programming approach is used to compute a sequence of feasible footstep locations. In contrast to existing navigation strategies for mobile(More)
This paper explores a behavior planning approach to automatically generate realistic motions for animated characters. Motion clips are abstracted as high-level behaviors and associated with a behavior finite-state machine (FSM) that defines the movement capabilities of a virtual character. During runtime, motion is generated automatically by a planning(More)
Humanoid robotics hardware and control techniques have advanced rapidly during the last five years. Presently, several companies are developing commercial prototype full-body humanoid robots. This humanoid technology will contribute to the development of sophisticated prostheses in the medical field, as well as human augmentation systems on the military(More)