Learn More
The sudden infant death syndrome (SIDS) is the leading cause of postneonatal infant mortality in the United States today, despite a dramatic 38% decrease in incidence due to a national risk reduction campaign advocating the supine sleep position. Our research in SIDS brainstems, beginning in 1985 and involving a single, large dataset, has become(More)
The sudden infant death syndrome (SIDS) is postulated to result from a failure of homeostatic responses to life-threatening challenges (e.g. asphyxia, hypercapnia) during sleep. The ventral medulla participates in sleep-related homeostatic responses, including chemoreception, arousal, airway reflex control, thermoregulation, respiratory drive, and blood(More)
Maternal cigarette smoking during pregnancy has been shown to be a major risk factor for the sudden infant death syndrome (SIDS). We hypothesized that SIDS is associated with altered 3H-nicotine binding to nicotinic receptors in brainstem nuclei related to cardiorespiratory control and/or arousal. We analyzed 3H-nicotine binding in 14 regions in SIDS and(More)
Muscarinic cholinergic activity in the human arcuate nucleus at the ventral medullary surface is postulated to be involved in cardiopulmonary control. A significant decrease in [3H]quinuclidinyl benzilate binding to muscarinic receptors in the arcuate nucleus is now shown to occur in sudden infant death syndrome (SIDS) infants, compared to infants dying(More)
Abnormalities in central respiratory control during sleep, arousal and/or cardiac activity have been reported in some infants who subsequently die of the sudden infant death syndrome (SIDS). We postulate that these abnormalities may result from dysfunction of the ventral and ventrolateral medulla, which, based on animal data, is an integrative site for(More)
The arcuate nucleus (ARC) at the ventral surface of the human medulla has been historically considered a precerebellar nucleus. More recently, it has been implicated in central chemoreception, cardiopulmonary coupling and blood pressure responses. A deficiency of the ARC has been reported in a subset of putative human developmental disorders of ventilatory(More)
Primary lateral sclerosis and hereditary spastic paraparesis are both rare neurodegenerative disorders characterized by progressive weakness and spasticity of the lower limbs, with involvement of the corticospinal tracts and sparing of anterior horn cells. We describe a consanguineous family in which three sons developed progressive paralysis of the lower(More)
The histology and location of human respiratory chemosensitive fields are not known. In contrast, the physiology of respiratory chemosensory areas in the ventral medulla of cats has been studied extensively, and their anatomy has been partially described. Using basic principles of comparative cytoarchitecture and computer-aided reconstructions of(More)
The human arcuate nucleus is postulated to be homologous to ventral medullary surface cells in animals that participate in ventilatory and blood pressure responses to hypercarbia and asphyxia. Recently, we reported a significant decrease in muscarinic cholinergic receptor binding in the arcuate nucleus in victims of the sudden infant death syndrome compared(More)
Some victims of sudden infant death syndrome have arcuate nucleus abnormalities. The arcuate nucleus may be homologous with ventral medullary structures in the cat known to be involved in the control of breathing and the response to systemic hypercapnia. We refer to putative arcuate homologues in the piglet collectively as the rostral ventral medulla (RVM).(More)