Learn More
MOTIVATION A microarray experiment is a multi-step process, and each step is a potential source of variation. There are two major sources of variation: biological variation and technical variation. This study presents a variance-components approach to investigating animal-to-animal, between-array, within-array and day-to-day variations for two data sets.(More)
When a large number of statistical tests is performed, the chance of false positive findings could increase considerably. The traditional approach is to control the probability of rejecting at least one true null hypothesis, the familywise error rate (FWE). To improve the power of detecting treatment differences, an alternative approach is to control the(More)
BACKGROUND The acceptance of microarray technology in regulatory decision-making is being challenged by the existence of various platforms and data analysis methods. A recent report (E. Marshall, Science, 306, 630-631, 2004), by extensively citing the study of Tan et al. (Nucleic Acids Res., 31, 5676-5684, 2003), portrays a disturbingly negative picture of(More)
A class-imbalanced classifier is a decision rule to predict the class membership of new samples from an available data set where the class sizes differ considerably. When the class sizes are very different, most standard classification algorithms may favor the larger (majority) class resulting in poor accuracy in the minority class prediction. A(More)
OBJECTIVE Personalized medicine is defined by the use of genomic signatures of patients in a target population for assignment of more effective therapies as well as better diagnosis and earlier interventions that might prevent or delay disease. An objective is to find a novel classification algorithm that can be used for prediction of response to therapy in(More)
DNA microarray technology provides useful tools for profiling global gene expression patterns in different cell/tissue samples. One major challenge is the large number of genes relative to the number of samples. The use of all genes can suppress or reduce the performance of a classification rule due to the noise of nondiscriminatory genes. Selection of an(More)
An objective of many functional genomics studies is to estimate treatment-induced changes in gene expression. cDNA arrays interrogate each tissue sample for the levels of mRNA for hundreds to tens of thousands of genes, and the use of this technology leads to a multitude of treatment contrasts. By-gene hypotheses tests evaluate the evidence supporting no(More)
BACKGROUND In experimental research, a statistical test is often used for making decisions on a null hypothesis such as that the means of gene expression in the normal and tumor groups are equal. Typically, a test statistic and its corresponding P value are calculated to measure the extent of the difference between the two groups. The null hypothesis is(More)
A robust classification procedure is developed based on ensembles of classifiers, with each classifier constructed from a different set of predictors determined by a random partition of the entire set of predictors. The proposed methods combine the results of multiple classifiers to achieve a substantially improved prediction compared to the optimal single(More)
BACKGROUND Many researchers are concerned with the comparability and reliability of microarray gene expression data. Recent completion of the MicroArray Quality Control (MAQC) project provides a unique opportunity to assess reproducibility across multiple sites and the comparability across multiple platforms. The MAQC analysis presented for the conclusion(More)