James Hemp

Learn More
Oxygenic photosynthesis is the most important bioenergetic event in the history of our planet—it evolved once within the Cyanobacteria, and remained largely unchanged as it was transferred to algae and plants via endosymbiosis. Manganese plays a fundamental role in this history because it lends the critical redox behavior of the water-oxidizing complex of(More)
Life on Earth originated and evolved in anoxic environments. Around 2.4 billion-years-ago, ancestors of Cyanobacteria invented oxygenic photosynthesis, producing substantial amounts of O2 as a byproduct of phototrophic water oxidation. The sudden appearance of O2 would have led to significant oxidative stress due to incompatibilities with core cellular(More)
Oxygenic photosynthesis evolved from anoxygenic ancestors before the rise of oxygen ~2.32 billion years ago; however, little is known about this transition. A high redox potential reaction center is a prerequisite for the evolution of the water-oxidizing complex of photosystem II. Therefore, it is likely that high-potential phototrophy originally evolved to(More)
Atrial myxomatous embolization into the coronary arteries is a rare event. Management of large myxomas is usually via surgical resection involving a median sternotomy. Echocardiography is not a routine part of non-ST-elevation myocardial infarction (NSTEMI) management. Here, we present the case of a 70-year-old Caucasian man with a history of hypertension(More)
We report here the draft genome sequence of Ardenticatena maritima 110S, the first sequenced member of class Ardenticatenia of the phylum Chloroflexi. This thermophilic organism is capable of a range of physiologies, including aerobic respiration and iron reduction. It also encodes a complete denitrification pathway with a novel nitric oxide reductase.
We report the draft genome sequence of Levilinea saccharolytica KIBI-1, a facultative anaerobic member of the Chloroflexi class Anaerolineae. While L. saccharolytica was characterized as an obligate anaerobe, genome analysis provides evidence for the presence of both aerobic respiration and partial denitrification pathways.
We present the draft genome sequence of Leptolinea tardivitalis YMTK-2, a member of the Chloroflexi phylum. This organism was initially characterized as a strictly anaerobic nonmotile fermenter; however, genome analysis demonstrates that it encodes for a flagella and might be capable of aerobic respiration.
We report here the draft genome sequence of Herpetosiphon geysericola GC-42, a predatory nonphototrophic member of the class Chloroflexia in the phylum Chloroflexi. This genome provides insight into the evolution of phototrophy and aerobic respiration within the Chloroflexi.
We present the draft genome of Thermanaerothrix daxensis GNS-1, a thermophilic member of the Chloroflexi phylum. This organism was initially characterized as a nonmotile, strictly anaerobic fermenter; however, genome analysis demonstrates that it encodes genes for a flagellum and multiple pathways for aerobic and anaerobic respiration.
We report the draft genome sequence of Ornatilinea apprima P3M-1, a strictly anaerobic member of the Chloroflexi class Anaerolineae. This genome provides insight into the diversity of metabolism within the Anaerolineae, and the evolution of respiration within the Chloroflexi.