Learn More
Traumatic injury to the adult central nervous system (CNS) results in a rapid response from resident astrocytes, a process often referred to as reactive astrogliosis or glial scarring. The robust formation of the glial scar and its associated extracellular matrix (ECM) molecules have been suggested to interfere with any subsequent neural repair or CNS(More)
Transections of the chicken spinal cord after the developmental onset of myelination at embryonic day (E) 13 results in little or no functional regeneration. However, intraspinal injection of serum complement proteins with complement-binding GalC or 04 antibodies between E9-E12 results in a delay of the onset of myelination until E17. A subsequent(More)
Axotomized spinal motoneurons are able to regenerate to their peripheral targets, whereas injured rubrospinal neurons that lie completely within the CNS fail to regenerate. The differing cell body reactions to axotomy of these two neuronal populations have been implicated in their disparate regenerative ability. Recently, the lectin galectin-1 has been(More)
The exogenous application of recombinant galectin-1 has recently been shown to promote the rate of peripheral nerve regeneration. Endogenous neuronal galectin-1 expression has recently been demonstrated to increase after axotomy. Here we demonstrate a significant increase in the endogenous neuronal expression of galectin-1 mRNA in facial motoneurons after(More)
The transmission of nociceptive information occurs along non-myelinated, or thinly myelinated, primary afferent axons. These axons are generally classified as peptidergic (CGRP-expressing) or non-peptidergic (IB4-binding), although there is a sub-population that is both CGRP-positive and IB4-binding. During neuronal development and following injury, trophic(More)
Galectin-1 (Gal1) is an endogenously-expressed protein important for the embryonic development of the full complement of primary sensory neurons and their synaptic connections in the spinal cord. Gal1 also promotes axonal regeneration following peripheral nerve injury, but the regulation of Gal1 by axotomy in primary afferent neurons has not yet been(More)
Previous experiments from our laboratory have shown that application of brain-derived neurotrophic factor (BDNF) to the red nucleus or the motor cortex stimulates an increase in the expression of regeneration-associated genes in rubrospinal and corticospinal neurons. Furthermore, we have previously shown that BDNF application stimulates regeneration of(More)
The onset of myelination in the embryonic chick spinal cord begins on embryonic day (E) 12 or E13 of the 21 day in ovo developmental period. This event coincides with a loss of functional axonal regeneration following complete transection of the thoracic spinal cord. In this study, we have characterised an immunological method for delaying the developmental(More)
  • 1