James H. Geiger

Learn More
We report a "running start, two-bond" protocol to analyze elongation by human RNA polymerase II (RNAP II). In this procedure, the running start allowed us to measure rapid rates of elongation and provided detailed insight into the RNAP II mechanism. Formation of two bonds was tracked to ensure that at least one translocation event was analyzed. By using(More)
Protein-chromophore interactions are a central component of a wide variety of critical biological processes such as color vision and photosynthesis. To understand the fundamental elements that contribute to spectral tuning of a chromophore inside the protein cavity, we redesigned human cellular retinol binding protein II (hCRBPII) to fully encapsulate(More)
The evolution of a variety of important chromophore-dependent biological processes, including microbial light sensing and mammalian color vision, relies on protein modifications that alter the spectral characteristics of a bound chromophore. Three different color opsins share the same chromophore, but have three distinct absorptions that together cover the(More)
Human small nuclear (sn) RNA genes are transcribed by either RNA polymerase II or III depending upon the arrangement of their core promoter elements. Regardless of polymerase specificity, these genes share a requirement for a general transcription factor called the snRNA activating protein complex or SNAP(C). This multi-subunit complex recognizes the(More)
Protein reengineering of cellular retinoic acid binding protein II (CRABPII) has yielded a genetically addressable system, capable of binding a profluorophoric chromophore that results in fluorescent protein/chromophore complexes. These complexes exhibit far-red emission, with high quantum efficiencies and brightness and also exhibit excellent pH stability(More)
Repeating sequences generated from RNA gene fusions/ligations dominate ancient life, indicating central importance of building structural complexity in evolving biological systems. A simple and coherent story of life on earth is told from tracking repeating motifs that generate α/β proteins, 2-double-Ψ-β-barrel (DPBB) type RNA polymerases (RNAPs), general(More)
The conantokins are short, naturally occurring peptides that inhibit ion flow through N-methyl-d-aspartate receptor (NMDAR) channels. One member of this peptide family, conantokin-G (con-G), shows high selectivity for antagonism of NR2B-containing NMDAR channels, whereas other known conantokins are less selective inhibitors with regard to the nature of the(More)
The structural integrity of cellular retinoic acid-binding protein II (CRABPII) has been investigated using the crystal structures of CRABPII mutants. The overall fold was well maintained by these CRABPII mutants, each of which carried multiple different mutations. A water-mediated network is found to be present across the large binding cavity, extending(More)
  • 1