James H. Doroshow

Learn More
Small-molecule inhibitors of PARP are thought to mediate their antitumor effects as catalytic inhibitors that block repair of DNA single-strand breaks (SSB). However, the mechanism of action of PARP inhibitors with regard to their effects in cancer cells is not fully understood. In this study, we show that PARP inhibitors trap the PARP1 and PARP2 enzymes at(More)
High-throughput and high-content databases are increasingly important resources in molecular medicine, systems biology, and pharmacology. However, the information usually resides in unwieldy databases, limiting ready data analysis and integration. One resource that offers substantial potential for improvement in this regard is the NCI-60 cell line database(More)
UNLABELLED Inhibition of PARP is a promising therapeutic strategy for homologous recombination-deficient tumors, such as BRCA1-associated cancers. We previously reported that BRCA1-deficient mouse mammary tumors may acquire resistance to the clinical PARP inhibitor (PARPi) olaparib through activation of the P-glycoprotein drug efflux transporter. Here, we(More)
This report investigates the mechanisms by which mammalian cells coordinate DNA replication with transcription and chromatin assembly. In yeast, DNA replication initiates within nucleosome-free regions, but studies in mammalian cells have not revealed a similar relationship. Here, we have used genome-wide massively parallel sequencing to map replication(More)
The NCI-60 cell lines are the most frequently studied human tumor cell lines in cancer research. This panel has generated the most extensive cancer pharmacology database worldwide. In addition, these cell lines have been intensely investigated, providing a unique platform for hypothesis-driven research focused on enhancing our understanding of tumor(More)
Since the early 1990s the Developmental Therapeutics Program of the National Cancer Institute (NCI) has utilized a panel of 60 human tumor cell lines (NCI60) representing 9 tissue types to screen for potential new anticancer agents. To date, about 100,000 compounds and 50,000 natural product extracts have been screened. Early in this program it was(More)
High-throughput 'omics' technologies that generate molecular profiles for biospecimens have been extensively used in preclinical studies to reveal molecular subtypes and elucidate the biological mechanisms of disease, and in retrospective studies on clinical specimens to develop mathematical models to predict clinical endpoints. Nevertheless, the(More)
Tumor cells are often deficient in DNA damage response (DDR) pathways, and anticancer therapies are commonly based on genotoxic treatments using radiation and/or drugs that damage DNA directly or interfere with DNA metabolism, leading to the formation of DNA double-strand breaks (DSB), and ultimately to cell death. Because DSBs induce the phosphorylation of(More)
3-Aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP), a new and potent inhibitor of ribonucleotide reductase (RR), increases the cellular uptake, DNA incorporation, and cytotoxicity of gemcitabine in tumor cell lines. A phase I trial was initiated to determine the safety profile and maximum tolerated doses of 3-AP and gemcitabine when used in(More)
This study investigated the effect of the anthracycline antibiotics on oxygen radical metabolism by cardiac mitochondrial reduced nicotinamide adenine dinucleotide (NADH) dehydrogenase [NADH:(acceptor) oxidoreductase, EC]. Superoxide formation by NADH dehydrogenase after anthracycline treatment appeared to follow saturation kinetics with an(More)