James H. Dickerson

Learn More
The assessment of macrophage response to nanoparticles is a central component in the evaluation of new nanoparticle designs for future in vivo application. This work investigates which feature, nanoparticle size or charge, is more predictive of non-specific uptake of nanoparticles by macrophages. This was investigated by synthesizing a library of(More)
This report describes methods to produce large-area films of graphene oxide from aqueous suspensions using electrophoretic deposition. By selecting the appropriate suspension pH and deposition voltage, films of the negatively charged graphene oxide sheets can be produced with either a smooth "rug" microstructure on the anode or a porous "brick"(More)
Superhydrophobic sponges and sponge-like materials have attracted great attention recently as potential sorbent materials for oil spill cleanup due to their excellent sorption capacity and high selectivity. A major challenge to their broad use is the fabrication of superhydrophobic sponges with superior recyclability, good mechanical strength, low cost, and(More)
A mathematical derivation of an analytical expression is presented to evaluate the van der Waals interaction between a sphere and a cylindrical rod. This expression then is applied to study the growth of one-dimensional nanostructures, such as nanorods, using a common growth mechanism in colloidal chemistry, the oriented attachment growth mechanism.(More)
A novel one-step solvothermal synthesis of stable colloidal EuS nanocrystals (NCs) is reported. The EuS NCs were synthesized in oleylamine directly from europium oleate and diethylammonium diethyldithiocarbamate in the presence of dodecanethiol and phenanthroline. The formation of single crystalline monodisperse EuS NCs, with sizes finely controlled by(More)
Since Penn et al. first discovered the oriented attachment growth of crystals, the oriented attachment mechanism has now become a major research focus in the crystal field, and extensive efforts have been carried out over the past decade to systematically investigate the growth mechanism and the statistical kinetic models. However, most of the work mainly(More)
The authors report a straightforward method to achieve spatially localized photonic band-gap structures in porous silicon. This photonic band-gap lithography technique consists of local photo-oxidation followed by exposure to methanol solvent. Reflectance measurements show that the oxidized porous silicon regions maintain their photonic band structure with(More)
The controlled electrophoretic deposition of polystyrene/divinylbenzene (PS/DVB) star polymer films from a colloidal suspension is reported. Liquid suspensions, containing the PS/DVB star polymer, were prepared by injecting a dichloromethane (DCM) solution of the star polymer into a stratified liquid combination of hexane and DCM. A variety of hexane/DCM(More)
Eu(2)O(3) nanocrystals, surface-functionalized with oleic acid, were assembled into transparent thin films via electrophoretic deposition (EPD). Suspended in a non-polar solvent (hexane), the nanocrystals were cast into stable films on both the cathode and the anode. We characterized the nanocrystal films using optical microscopy, energy dispersive(More)
We report the novel synthesis of nanoporous TiO2 nanoparticle ensembles with unique mesoscale morphologies. Constituent nanoparticles evolved into multifaceted assemblies, exhibiting excellent crystallinity and enhanced photocatalytic activity compared with commercial TiO2. Such materials could be exploited for applications, like organic pollutant(More)