Learn More
This paper presents a general, fully Bayesian framework for sparse supervised-learning problems based on the horseshoe prior. The horseshoe prior is a member of the family of multivariate scale mixtures of normals, and is therefore closely related to widely used approaches for sparse Bayesian learning, including , among others, Laplacian priors (e.g. the(More)
Characterizing the information carried by neural populations in the brain requires accurate statistical models of neural spike responses. The negative-binomial distribution provides a convenient model for over-dispersed spike counts, that is, responses with greater-than-Poisson variability. Here we describe a powerful data-augmentation framework for fully(More)
In this paper we develop proximal methods for statistical learning. Proximal point algorithms are useful in statistics and machine learning for obtaining optimization solutions for composite functions. Our approach exploits closed-form solutions of proximal operators and envelope representations based on the Moreau, Forward-Backward, Douglas-Rachford and(More)
This paper uses Bayesian tree models for statistical benchmarking in data sets with awkward marginals and complicated dependence structures. The method is applied to a very large database on corporate performance over the last four decades. The results of this study provide a formal basis for making cross-peer-group comparisons among companies in very(More)
  • 1