Learn More
This paper proposes a novel method to apply the standard graph cut technique to segmenting multimodal tensor valued images. The Riemannian nature of the tensor space is explicitly taken into account by first mapping the data to a Euclidean space where non-parametric kernel density estimates of the regional distributions may be calculated from user(More)
The purpose of this paper is to describe certain alternative metrics for quantifying distances between distributions, and to explain their use and relevance in visual tracking. Besides the theoretical interest, such metrics may be used to design filters for image segmentation, that is for solving the key visual task of separating an object from the(More)
The standard graph cut technique is a robust method for globally optimal image segmentation. However, because of its global nature, it is prone to capture outlying areas similar to the object of interest. This paper proposes a novel method to constrain the standard graph cut technique for tracking objects in a region of interest. By introducing an(More)
We propose a technique to simultaneously estimate the local fiber orientations and perform multi-fiber tractography. Existing techniques estimate the local fiber orientation at each voxel independently so there is no running knowledge of confidence in the measured signal or estimated fiber orientation. Further, to overcome noise, many algorithms use a(More)
We describe a technique that uses tractography to drive the local fiber model estimation. Existing techniques use independent estimation at each voxel so there is no running knowledge of confidence in the estimated model fit. We formulate fiber tracking as recursive estimation: at each step of tracing the fiber, the current estimate is guided by those(More)
The standard graph cut technique is a robust method for globally optimal image segmentations. However, because of its global nature, it is prone to capture outlying areas similar to the object of interest. This paper proposes a novel method to constrain the standard graph cut technique for tracking anywhere from one to several objects in regions of(More)
The level set method is a popular technique used in medical image segmentation; however, the numerics involved make its use cumbersome. This paper proposes an approximate level set scheme that removes much of the computational burden while maintaining accuracy. Abandoning a floating point representation for the signed distance function, we use integral(More)
Often considered benign, meningiomas represent 32% of intracranial tumors with three grades of malignancy defined by the World Health Organization (WHO) histology based classification. Malignant meningiomas are associated with less than 2 years median survival. The inability to predict recurrence and progression of meningiomas induces significant anxiety(More)
We describe a probabilistic technique for separating two populations whereby analysis is performed on affine-invariant representations of each patient. The method begins by converting each voxel from a high-dimensional diffusion weighted signal to a low-dimensional diffusion tensor representation. Three orthogonal measures that capture different aspects of(More)
Graph cut image segmentation with intensity information alone is prone to fail for objects with weak edges, in clutter, or under occlusion. Existing methods to incorporate shape are often too restrictive for highly varied shapes, use a single fixed shape which may be prone to misalignment, or are computationally intensive. In this note we show how highly(More)