James G. Donnett

Learn More
The neural basis of navigation by humans was investigated with functional neuroimaging of brain activity during navigation in a familiar, yet complex virtual reality town. Activation of the right hippocampus was strongly associated with knowing accurately where places were located and navigating accurately between them. Getting to those places quickly was(More)
The involvement of the medial temporal-lobe region in allocentric mapping of the environment has been observed in human lesion and functional imaging work. Cognitive models of environmental learning ascribe a key role to salient landmarks in representing large-scale space. In the present experiments we examined the neural substrates of the topographical(More)
To explore the plastic representation of information in spatially selective hippocampal pyramidal neurons, we made multiple single-unit recordings in rats trained to find a hidden platform at a constant location in a hippocampal-dependent annular watermaze task. Hippocampal pyramidal cells exhibited place-related firing in the watermaze. Place fields tended(More)
The properties of hippocampal place cells are reviewed, with particular attention to the nature of the internal and external signals that support their firing. A neuronal simulation of the firing of place cells in open-field environments of varying shape is presented. This simulation is coupled with an existing model of how place-cell firing can be used to(More)
The hippocampal formation in both rats and humans is involved in spatial navigation. In the rat, cells coding for places, directions, and speed of movement have been recorded from the hippocampus proper and/or the neighbouring subicular complex. Place fields of a group of the hippocampal pyramidal cells cover the surface of an environment but do not appear(More)
Pyramidal cells in the rat hippocampus fire whenever the animal is in a particular place, suggesting that the hippocampus maintains a representation of the environment. Receptive fields of place cells (place fields) are largely determined by the distance of the rat from environmental walls. Because these walls are sometimes distinguishable only by their(More)
The present study investigated whether the medial septal nucleus controls theta-correlated unit activity in the entorhinal cortex (EC), as it does in the hippocampus. Single neurones were recorded from the medial EC of rats as they ran on a linear track or chased food pellets on a small platform. The most prominent pattern of cell activity observed was(More)
To provide a background for studying place-related activity in hippocampal neurons during spatial learning, we compared the activity of hippocampal place cells in an annular watermaze and an analogous land-based task. Complex-spike cells had robust place correlates in both conditions, and a significant proportion of the cells had place fields at the same(More)