James Fielding Hejtmancik

Learn More
Cataract can be defined as any opacity of the crystalline lens. Congenital cataract is particularly serious because it has the potential for inhibiting visual development, resulting in permanent blindness. Inherited cataracts represent a major contribution to congenital cataracts, especially in developed countries. While cataract represents a common end(More)
Blue cone monochromacy is a rare X-linked disorder of color vision characterized by the absence of both red and green cone sensitivities. In 12 of 12 families carrying this trait, alterations are observed in the red and green visual pigment gene cluster. The alterations fall into two classes. One class arose from the wild type by a two-step pathway(More)
Rapamycin increases lifespan in mice, but whether this represents merely inhibition of lethal neoplastic diseases, or an overall slowing in multiple aspects of aging is currently unclear. We report here that many forms of age-dependent change, including alterations in heart, liver, adrenal glands, endometrium, and tendon, as well as age-dependent decline in(More)
Lens opacities, or cataract(s), may be inherited as a classic Mendelian disorder usually with early-onset or, more commonly, acquired with age as a multi-factorial or complex trait. Many genetic forms of cataract have been described in mice and other animal models. Considerable progress has been made in mapping and identifying the genes and mutations(More)
Primary congenital glaucoma (PCG) is an autosomal-recessive condition characterized by high intraocular pressure (IOP), usually within the first year of life, which potentially could lead to optic nerve damage, globe enlargement, and permanent loss of vision. To date, PCG has been linked to three loci: 2p21 (GLC3A), for which the responsible gene is CYP1B1,(More)
PURPOSE Cataracts are a clinically and genetically heterogeneous disorder affecting the ocular lens, and the leading cause of treatable vision loss and blindness worldwide. Here we identify a novel gene linked with a rare autosomal dominant form of childhood cataracts segregating in a four generation pedigree, and further show that this gene is likely(More)
PURPOSE To unravel the molecular genetic background in families with congenital cataract in association with microcornea (CCMC, OMIM 116150). METHODS CCMC families were recruited from a national database on hereditary eye diseases; DNA was procured from a national gene bank on hereditary eye diseases and by blood sampling from one large family. Genomewide(More)
Bietti crystalline corneoretinal dystrophy (BCD) is an autosomal recessive retinal dystrophy characterized by multiple glistening intraretinal crystals scattered over the fundus, a characteristic degeneration of the retina, and sclerosis of the choroidal vessels, ultimately resulting in progressive night blindness and constriction of the visual field. The(More)
OBJECTIVE To map and identify the gene for autosomal recessive congenital hereditary endothelial dystrophy (CHED2, OMIM 217700), a disorder characterised by diffuse bilateral corneal clouding that may lead to visual impairment and requiring corneal transplantation. METHODS Members of 16 families with autosomal recessive CHED were genotyped for 13(More)
PURPOSE Pediatric cataract is the most common form of treatable childhood blindness and is both clinically and genetically heterogeneous. Autosomal dominant and recessive forms of cataract have been reported to be caused by mutations in 22 different genes so far. Of the cataract mutations reported to date, about half the mutations occur in crystallins, a(More)