Learn More
A traditional goal of Artificial Intelligence research has been a system that can read unrestricted natural language texts on a given topic, build a model of that topic and reason over the model. Natural Language Processing advances in syntax and semantics have made it possible to extract a limited form of meaning from sentences. Knowledge Representation(More)
A source expansion algorithm automatically extends a given text corpus with related content from large external sources such as the Web. The expanded corpus is not intended for human consumption but can be used in question answering (QA) and other information retrieval or extraction tasks to find more relevant information and supporting evidence. We propose(More)
The first stage of processing in the IBM Watsoni system is to perform a detailed analysis of the question in order to determine what it is asking for and how best to approach answering it. Question analysis uses Watson's parsing and semantic analysis capabilities: a deep Slot Grammar parser, a named entity recognizer, a co-reference resolution component,(More)
One useful source of evidence for evaluating a candidate answer to a question is a passage that contains the candidate answer and is relevant to the question. In the DeepQA pipeline, we retrieve passages using a novel technique that we call Supporting Evidence Retrieval, in which we perform separate search queries for each candidate answer, in parallel, and(More)
As part of the ongoing project, Project Halo, our goal is to build a system capable of answering questions posed by novice users to a formal knowledge base. In our current context, the knowledge base covers selected topics in physics, chemistry, and biology, and our question set consists of AP (advanced high-school) level examination questions. The task is(More)
This paper describes a novel approach to the semantic relation detection problem. Instead of relying only on the training instances for a new relation, we leverage the knowledge learned from previously trained relation detectors. Specifically, we detect a new semantic relation by projecting the new relation's training instances onto a lower dimension topic(More)
This paper aims to solve the problem of improving the ranking of answer candidates for factoid based questions in a state-of-the-art Question Answering system. We first provide an extensive comparison of 5 ranking algorithms on two datasets -- from the Jeopardy quiz show and a medical domain. We then show the effectiveness of a cascading approach, where the(More)
Most existing Question Answering (QA) systems adopt a type-and-generate approach to candidate generation that relies on a pre-defined domain ontology. This paper describes a type independent search and candidate generation paradigm for QA that leverages Wikipedia characteristics. This approach is particularly useful for adapting QA systems to domains where(More)