Learn More
Ideas about atmospheric composition and climate on the early Earth have evolved considerably over the last 30 years, but many uncertainties still remain. It is generally agreed that the atmosphere contained little or no free oxygen initially and that oxygen concentrations increased markedly near 2.0 billion years ago, but the precise timing of and reasons(More)
Mass-independent fractionation (MIF) of sulfur isotopes has been reported in sediments of Archean and Early Proterozoic Age (> 2.3 Ga) but not in younger rocks. The only fractionation mechanism that is consistent with the data on all four sulfur isotopes involves atmospheric photochemical reactions such as SO2 photolysis. We have used a one-dimensional(More)
Earth appears to have been warm during its early history despite the faintness of the young Sun. Greenhouse warming by gaseous CO2 and H2O by itself is in conflict with constraints on atmospheric CO2 levels derived from paleosols for early Earth. Here we explore whether greenhouse warming by methane could have been important. We find that a CH4 mixing ratio(More)
Geological and biological evidence suggests that Earth was warm during most of its early history, despite the fainter young Sun. Upper bounds on the atmospheric CO2 concentration in the Late Archean/Paleoproterozoic (2.8-2.2 Ga) from paleosol data suggest that additional greenhouse gases must have been present. Methanogenic bacteria, which were arguably(More)
A one-dimensional climate model is used to study the response of an Earth-like atmosphere to large increases in solar flux. For fully saturated, cloud-free conditions, the critical solar flux at which a runaway greenhouse occurs, that is, the oceans evaporate entirely, is found to be 1.4 times the present flux at Earth's orbit (S0). This value is close to(More)
A decade ago, Lovelock and Whitfield raised the question of how much longer the biosphere can survive on Earth. They pointed out that, despite the current fossil-fuel induced increase in the atmospheric CO2 concentration, the long-term trend should be in the opposite direction: as increased solar luminosity warms the Earth, silicate rocks should weather(More)
Large asteroid impacts produced globally lethal conditions by evaporating large volumes of ocean water on the early Earth. The Earth may have been continuously habitable by ecosystems that did not depend on photosynthesis as early as 4.44 Gyr BP (before present). Only a brief interval after 3.8 Gyr exists between the time when obligate photosynthetic(More)
A one-dimensional, radiative-convective climate model was used to reexamine the question of whether early Mars could have been kept warm by the greenhouse effect of a dense, CO2 atmosphere. The new model differs from previous models by considering the influence of CO2 clouds on the convective lapse rate and on the the planetary radiation budget. (More)
Coupled radiative-convective/photochemical modeling was performed for Earth-like planets orbiting different types of stars (the Sun as a G2V, an F2V, and a K2V star). O(2) concentrations between 1 and 10(-5) times the present atmospheric level (PAL) were simulated. The results were used to calculate visible/near-IR and thermal-IR spectra, along with surface(More)