Learn More
Integrins provide the primary link between mesenchymal stem cells (MSCs) and their surrounding extracellular matrix (ECM), with different integrin pairs having specificity for different ECM molecules or peptide sequences contained within them. It is widely acknowledged that the type of ECM present can influence MSC differentiation; however, it is yet to be(More)
Relatively little is known about the epigenetic control mechanisms that guide postnatal organ maturation. The goal of this study was to determine whether DNA methylation plays an important role in guiding transcriptional changes during the first 2 wk of mouse heart development, which is an important period for cardiomyocyte maturation, loss of proliferative(More)
Chondrogenesis of mesenchymal stem cells (MSCs) is typically induced when they are condensed into a single aggregate and exposed to transforming growth factor-beta (TGF-beta). Hypoxia, like aggregation and TGF-beta delivery, may be crucial for complete chondrogenesis. However, the pellet dimensions and associated self-induced oxygen gradients of current(More)
Human mesenchymal stromal cells (hMSCs) have generated significant interest due to their potential use in clinical applications. hMSCs are present at low frequency in vivo, but after isolation can be expanded considerably, generating clinically useful numbers of cells. In this study, we demonstrate the use of a defined embryonic stem cell expansion medium,(More)
Our understanding of cardiovascular disease has evolved rapidly, leading to a number of treatments that have improved patient quality of life and mortality rates. However, there is still no cure for heart failure. This has led to the pursuit of cardiac regeneration to prevent, and ultimately cure, this debilitating condition. To this end, several approaches(More)
The successful generation of functional muscle tissues requires both an in-depth knowledge of muscle tissue physiology and advanced engineering practices. The inherent contractile functionality of muscle is a result of its high-level cellular and matrix organization over a multitude of length scales. While there have been many attempts to produce artificial(More)
Timed exposure of pluripotent stem cell cultures to exogenous molecules is widely used to drive differentiation towards desired cell lineages. However, screening differentiation conditions in conventional static cultures can become impractical in large parameter spaces, and is intrinsically limited by poor spatiotemporal control of the microenvironment that(More)
Pluripotent stem cell-derived cardiomyocytes are currently being investigated for in vitro human heart models and as potential therapeutics for heart failure. In this study, we have developed a differentiation protocol that minimizes the need for specific human embryonic stem cell (hESC) line optimization. We first reduced the heterogeneity that exists(More)