James Doebbler

Learn More
This paper presents an improved Adaptive-Reinforcement Learning Control methodology for the problem of unmanned air vehicle morphing control. The reinforcement learning morphing control function that learns the optimal shape change policy is integrated with an adaptive dynamic inversion control trajectory tracking function. An episodic unsupervised learning(More)
— We are developing a mobile robot capable of emulating general 6-degree-of-freedom spacecraft relative motion. The omni-directional base uses a trio of active split offset castor drive modules to provide smooth, holonomic, precise control of its motion. Encoders measure the rotations of the six wheels and the three castor pivots. We present a generic(More)
Testing and validation of flight hardware in ground-based facilities can result in significant cost savings and risk reduction. We designed a relative motion emulator for aerospace vehicles using omni-directional mobile bases which provide large 3 degree-of-freedom motion, while Stewart platforms mounted atop these bases allow superposition of limited 6(More)
Autonomous air refueling is an important capability for the future deployment of unmanned air vehicles, because it permits unmanned air vehicles to be ferried in flight to overseas theaters of operation instead of being shipped unassembled in containers. This paper demonstrates the feasibility of precise and reliable boom and receptacle autonomous air(More)
—We are developing an autonomous mobile robotic system to emulate six degree of freedom relative spacecraft motion during proximity operations. A mobile omni-directional base robot provides x, y, and yaw planar motion with moderate accuracy through six independently driven motors. With a six degree of freedom micro-positioning Stewart platform on top of the(More)
Ground testing of multi-spacecraft proximity operations with hardware in-the-loop is currently an expensive and challenging process. We present our approach to this problem, applicable to proximity operations of small spacecraft. We are developing a novel autonomous mobile robotic system to emulate full 6 degree of freedom relative motion at high fidelity.(More)