James C. Sturm

Learn More
We report on a microfluidic particle-separation device that makes use of the asymmetric bifurcation of laminar flow around obstacles. A particle chooses its path deterministically on the basis of its size. All particles of a given size follow equivalent migration paths, leading to high resolution. The microspheres of 0.8, 0.9, and 1.0 micrometers that were(More)
Photonic bandgap crystals can reflect light for any direction of propagation in specific wavelength ranges. This property, which can be used to confine, manipulate and guide photons, should allow the creation of all-optical integrated circuits. To achieve this goal, conventional semiconductor nanofabrication techniques have been adapted to make photonic(More)
......................................................................................... iii<lb>Acknowledgements ............................................................................. v Chapter 1 Motivation and Organization of this Thesis ............................... 1<lb>1.1 Large-Area and Flexible Electronics and Displays(More)
The successful design of nanofluidic devices for the manipulation of biopolymers requires an understanding of how the predictions of soft condensed matter physics scale with device dimensions. Here we present measurements of DNA extended in nanochannels and show that below a critical width roughly twice the persistence length there is a crossover in the(More)
We show that genomic-length DNA molecules imaged in nanochannels have an extension along the channel that scales linearly with the contour length of the polymer, in agreement with the scaling arguments developed by de Gennes for self-avoiding confined polymers. This fundamental relationship allows us to measure directly the contour length of single DNA(More)
Deterministic separation of cancer cells from blood at 10 mL/min Kevin Loutherback,1,2,a Joseph D’Silva,1,2 Liyu Liu,1,3 Amy Wu,1,2 Robert H. Austin,1,3,b and James C. Sturm1,2 1Princeton Institute for the Science and Technology of Materials (PRISM), Princeton Universtiy, Princeton, NJ, USA 2Department of Electrical Engineering, Princeton University,(More)
We report that a room temperature hydrogen plasma exposure in a parallel plate diode type reactive ion etcher can reduce the time required for the subsequent thermal crystallization of amorphous silicon time by a factor of five. Exposure to hydrogen plasma reduces the incubation time, while the rate of crystallization itself is not greatly affected. This(More)
We show the fractionation of whole blood components and isolation of blood plasma with no dilution by using a continuous-flow deterministic array that separates blood components by their hydrodynamic size, independent of their mass. We use the technology we developed of deterministic arrays which separate white blood cells, red blood cells, and platelets(More)
Miniaturization to the micrometer and nanometer scale opens up the possibility to probe biology on a length scale where fundamental biological processes take place, such as the epigenetic and genetic control of single cells. To study single cells the necessary devices need to be integrated on a single chip; and, to access the relevant length scales, the(More)
The fractionation of small particles in a liquid based on their size in a micropost array by deterministic lateral displacement was recently demonstrated with unprecedented resolution (L. R. Huang, E. C. Cox, R. H. Austin and J. C. Sturm, Science, 2004, 304, 987-990, ). In this paper, we present a model of how the critical particle size for fractionation(More)