Learn More
BACKGROUND High extracellular glutamate concentrations have been identified as a likely trigger of epileptic seizures in mesial temporal lobe epilepsy (MTLE), but the underlying mechanism remains unclear. We investigated whether a deficiency in glutamine synthetase, a key enzyme in catabolism of extracellular glutamate in the brain, could explain the(More)
Manganese (Mn) is an essential mineral but is toxic when taken in excess. However, whether its interactions with other minerals in organs and cells are involved in mechanisms underlying Mn toxicity is poorly understood. We designed a developmental rat model of chronic Mn treatment (Group A: 1 mg MnCl2.4H2O per ml of drinking water; Group B: 10 mg MnCl2.4H2O(More)
Previous (13)C magnetic resonance spectroscopy experiments have shown that over a wide range of neuronal activity, approximately one molecule of glucose is oxidized for every molecule of glutamate released by neurons and recycled through astrocytic glutamine. The measured kinetics were shown to agree with the stoichiometry of a hypothetical(More)
An excess of extracellular glutamate in the hippocampus has been linked to the generation of recurrent seizures and brain pathology in patients with medically intractable mesial temporal lobe epilepsy (MTLE). However, the mechanism which results in glutamate excess in MTLE remains unknown. We recently reported that the glutamate-metabolizing enzyme(More)
Manganese (Mn) is neurotoxic: the underlying mechanisms have not been fully elucidated. L: -Buthionine-(S,R)-sulfoximine (BSO) is an irreversible inhibitor of gamma-glutamylcysteine synthetase, an important enzyme in glutathione (GSH) synthesis. To test the hypothesis that BSO modulates Mn toxicity, we investigated the effects of treatment of U-87 or(More)
The immature brain is more resistant to hypoxia/ischemia than the mature brain. Although chronic hypoxia can induce adaptive-changes on the developing brain, the mechanisms underlying such adaptive changes are poorly understood. To further elucidate some of the adaptive changes during postnatal hypoxia, we determined the activities of four enzymes of(More)
l. The apparent Michaelis constants of the glutamate dehydrogenase (EC 1.4.1.3), the !glutamate-oxaloacetate transaminase (EC 2.6.1.1) and the glutaminase (EC 3.5.1.2) of :rat brain mitochondria derived from non-synaptic (M) and synaptic (SM2) sources were studied. 2. The kinetics of oxygen uptake by both populations of mitochondria in the presence of a(More)