Learn More
Current software-based microarchitecture simulators are many orders of magnitude slower than the hardware they simulate. Hence, most microarchitecture design studies draw their conclusions from drastically truncated benchmark simulations that are often inaccurate and misleading. This paper presents the Sampling Microarchitecture Simulation (SMARTS)(More)
To protect processor logic from soft errors, multicore redundant architectures execute two copies of a program on separate cores of a chip multiprocessor (CMP). Maintaining identical instruction streams is challenging because redundant cores operate independently, yet must still receive the same inputs (e.g., load values and shared-memory invalidations).(More)
In deep sub-micron ICs, growing amounts of on- die memory and scaling effects make embedded memories increasingly vulnerable to reliability and yield problems. As scaling progresses, soft and hard errors in the memory system will increase and single error events are more likely to cause large-scale multi- bit errors. However, conventional memory protection(More)
To extend the exponential performance scaling of future chip multiprocessors, improving energy efficiency has become a first-class priority. Single-chip heterogeneous computing has the potential to achieve greater energy efficiency by combining traditional processors with unconventional cores (U-cores) such as custom logic, FPGAs, or GPGPUs. Although(More)
An FPGA is a peculiar hardware realization substrate in terms of the relative speed and cost of logic vs. wires vs. memory. In this paper, we present a Network-on-Chip (NoC) design study from the mindset of NoC as a synthesizable infrastructural element to support emerging System-on-Chip (SoC) applications on FPGAs. To support our study, we developed(More)
Diminutive devices and high clock frequency of future microprocessor generations are causing increased concerns for transient soft failures in hardware, necessitating fault detection and recovery mechanisms even in commodity processors. In this paper, we propose a fault-tolerant extension for modern superscalar out-of-order datapath that can be supported by(More)
Recent studies have suggested that the soft-error rate in microprocessor logic will become a reliability concern by 2010. This paper proposes an efficient error detection technique, called <i>fingerprinting</i>, that detects differences in execution across a dual modular redundant (DMR) processor pair. Fingerprinting summarizes a processor's execution(More)
for Hotchips 2006 Krste Asanović (MIT), Derek Chiou (UT Austin), James C. Hoe (CMU), Christoforos Kozyrakis (Stanford), Shih-Lien Lu (Intel), Mark Oskin (U Washington), David Patterson (UC Berkeley), Jan Rabaey (UC Berkeley), and John Wawrzynek (UC Berkeley) CONTACT INFORMATION: Professor David Patterson 635 Soda Hall Department of Electrical Engineering(More)
Most hardware description frameworks, whether schematic or textual, use cooperating finite state machines (CFSM) as the underlying abstraction. In the CFSM framework, a designer explicitly manages the concurrency by scheduling the exact cycle-by-cycle interactions between multiple concurrent state machines. Design mistakes are common in coordinating(More)