James C. Greer

Learn More
The nitrogen-vacancy (NV) center in diamond has shown great promise for quantum information due to the ease of initializing the qubit and of reading out its state. Here we show the leading mechanism for these effects gives results opposite from experiment; instead both must rely on new physics. Furthermore, NV centers fabricated in nanometer-sized diamond(More)
J. Andreas Larsson,1,* Simon D. Elliott,1 James C. Greer,1 Jascha Repp,2,3 Gerhard Meyer,2 and Rolf Allenspach2 1Tyndall National Institute, Lee Maltings, Prospect Row, Cork, Ireland 2IBM Research, Zurich Research Laboratory, CH-8803 Rüschlikon, Switzerland 3Institute of Experimental and Applied Physics, University of Regensburg, 93040 Regensburg, Germany(More)
Band gap modification for small-diameter (approximately 1 nm) silicon nanowires resulting from the use of different species for surface termination is investigated by density functional theory calculations. Because of quantum confinement, small-diameter wires exhibit a direct band gap that increases as the wire diameter narrows, irrespective of surface(More)
Atomic-scale molecular dynamics computer simulations are used to probe the structure, dynamics, and energetics of alkylamine self-assembled monolayer (SAM) films on graphene and to model the formation of molecular bilayers and protein complexes on the films. Routes toward the development and exploitation of functionalized graphene structures are detailed(More)
The influence of local oxidation in silicon nanowires on hole transport, and hence the effect of varying the oxidation state of silicon atoms at the wire surface, is studied using density functional theory in conjunction with a Green's function scattering method. For silicon nanowires with growth direction along [110] and diameters of a few nanometers, it(More)
For investigation of electron transport on the nanoscale, a system possessing a simple-to-interpret electronic structure is composed of alkane chains bridging two electrodes via end groups; to date, the majority of experiments and theoretical investigations on such structures have considered thiols bonding to gold electrodes. Recently experiments show that(More)
Two different first-principles methods, one based on density functional theory combined with Green’s functions and the other on a configuration interaction method, are used to calculate the electronic transport properties of alkane and silane chains terminated by amine end groups in metal-molecule-metal junctions. The lowvoltage conductance is found to(More)
The role of reduced dimensionality and of the surface on electron-phonon (e-ph) coupling in silicon nanowires is determined from first principles. Surface termination and chemistry is found to have a relatively small influence, whereas reduced dimensionality fundamentally alters the behavior of deformation potentials. As a consequence, electron coupling to(More)
Spreading of ink outside the desired printed area is one of the major limitations of microcontact printing (micro-CP) with alkanethiol self-assembled monolayers (SAMs) on gold. We use molecular dynamics (MD) computer simulations to quantify the temperature and concentration dependence of hexadecanethiol (HDT) ink spreading on HDT SAMs, modeling 18 distinct(More)