James C. Greer

Learn More
Two different first-principles methods, one based on density functional theory combined with Green's functions and the other on a configuration interaction method, are used to calculate the electronic transport properties of alkane and silane chains terminated by amine end groups in metal-molecule-metal junctions. The low-voltage conductance is found to(More)
For investigation of electron transport on the nanoscale, a system possessing a simple-to-interpret electronic structure is composed of alkane chains bridging two electrodes via end groups; to date, the majority of experiments and theoretical investigations on such structures have considered thiols bonding to gold electrodes. Recently experiments show that(More)
Dissociation energies for the diatomic molecules C2, N2, O2, CO, and NO are estimated using the Monte Carlo configuration interaction (MCCI) and augmented by a second order perturbation theory correction. The calculations are performed using the correlation consistent polarized valence "triple zeta" atomic orbital basis and resulting dissociation energies(More)
The use of Buckingham (exp-6) van der Waals potentials in molecular dynamics (MD) simulations can quite successfully reproduce experimental thermodynamic data at low densities. However, they are less successful in producing a description of the repulsive regions of the potential energy surface (PES) that is in accord with the results of high-level ab initio(More)
We present a theoretical study of the bonding of atomic phosphorus to planar hydrocarbons and to curved graphite-like surfaces. We find that bonding of phosphorus to planar polycyclic hydrocarbons induces curvature away from the phosphorus atom, as defined by the pyramidalization angle. Similarly, bonding of atomic phosphorus to the [5,5](More)
  • 1