Learn More
Low-voltage-activated (LVA) T-type calcium channels have a wide tissue distribution and have well-documented roles in the control of action potential burst generation and hormone secretion. In neurons of the central nervous system and secretory cells of the adrenal and pituitary, LVA channels are inhibited by activation of G-protein-coupled receptors that(More)
Gbetagamma, a ubiquitous second messenger, relays external signals from G protein-coupled receptors to networks of intracellular effectors, including voltage-dependent calcium channels. Unlike high-voltage-activated Ca(2+) channels, the inhibition of low-voltage-activated Ca(2+) channels is subtype-dependent and mediated selectively by Gbeta(2)-containing(More)
Two-pore-domain K(+) channels provide neuronal background currents that establish resting membrane potential and input resistance; their modulation provides a prevalent mechanism for regulating cellular excitability. The so-called TASK channel subunits (TASK-1 and TASK-3) are widely expressed, and they are robustly inhibited by receptors that signal through(More)
G protein-coupled inwardly rectifying potassium (GIRK) channels can be activated or inhibited by different classes of receptors, suggesting a role for G proteins in determining signaling specificity. Because G protein betagamma subunits containing either beta1 or beta2 with multiple Ggamma subunits activate GIRK channels, we hypothesized that specificity(More)
Neuronal G protein-coupled inwardly-rectifying potassium channels (GIRKs, Kir3.x) can be activated or inhibited by distinct classes of receptors (Galphai/o and Galphaq/11-coupled, respectively), providing dynamic regulation of neuronal excitability. In this mini-review, we highlight findings from our laboratory in which we used a mammalian heterologous(More)
The signaling specificity of five purified G protein betagamma dimers, beta(1)gamma(2), beta(2)gamma(2), beta(3)gamma(2), beta(4)gamma(2), and beta(5)gamma(2), was explored by reconstituting them with G(s) alpha and receptors or effectors in the adenylyl cyclase cascade. The ability of the five betagamma dimers to support receptor-alpha-betagamma(More)
Recent studies have reported that adenosine is a significant mediator of regulatory T cell (Treg) function. Indeed, activation of the adenosine receptor subtypes expressed by a broad range of immune and inflammatory cells attenuates inflammation in several disease models. This anti-inflammatory response is associated with an increase in intracellular cAMP(More)
Angiotensinogen (renin substrate) and its messenger RNA are known to accumulate in the rat brain. We have cloned rat preangiotensinogen cDNAs and used them as probes to measure the accumulation of preangiotensinogen messenger RNA sequences in eight regions of rat brain, as well as in liver and kidney. The brain regions examined were the cerebral cortex,(More)
Recent studies have demonstrated that angiotensin II, catecholamines, and vasopressin can stimulate the phosphorylation of hepatic cytosolic proteins via a Ca2+-linked cyclic AMP-independent mechanism. The present study used high resolution, two-dimensional gel electrophoresis to determine if the proteins phosphorylated in response to the Ca2+-linked(More)
The cytoskeletal protein, tubulin, has been shown to regulate adenylyl cyclase activity through its interaction with the specific G protein alpha subunits, Galphas or Galphai1. Tubulin activates these G proteins by transferring GTP and stabilizing the active nucleotide-bound Galpha conformation. To study the possibility of tubulin involvement in(More)