Learn More
Neurogenesis occurs in the olfactory system of the adult brain throughout life, in both invertebrates and vertebrates, but its physiological regulation is not understood. We show that the production of neuronal progenitors is stimulated in the forebrain subventricular zone of female mice during pregnancy and that this effect is mediated by the hormone(More)
The placenta is the first organ to form during mammalian embryogenesis. Problems in its formation and function underlie many aspects of early pregnancy loss and pregnancy complications in humans. Because the placenta is critical for survival, it is very sensitive to genetic disruption, as reflected by the ever-increasing list of targeted mouse mutations(More)
Trophoblast cells are the first lineage to form in the mammalian conceptus and mediate the process of implantation. We report the cloning of a basic helix-loop-helix (bHLH) transcription factor gene, Hxt, that is expressed in early trophoblast and in differentiated giant cells. A separate gene, Hed, encodes a related protein that is expressed in maternal(More)
Through studies of transgenic and mutant mice, it is possible to describe molecular pathways that control the development of all major trophoblast cell subtypes and structures of the placenta. For example, the proliferation of trophoblast stem cells is dependent on FGF signalling and downstream transcription factors Cdx2, Eomes and Err2. Several bHLH(More)
Trophoblast cells of the placenta are established at the blastocyst stage and differentiate into specialized subtypes after implantation. In mice, the outer layer of the placenta consists of trophoblast giant cells that invade the uterus and promote maternal blood flow to the implantation site by producing cytokines with angiogenic and vasodilatory actions.(More)
  • J C Cross
  • 2000
The placenta is comprised of an inner vascular network covered by an outer epithelium, called trophoblast, all designed to promote the delivery of nutrients to the fetus. Several specialized trophoblast cell subtypes arise during development to promote this function, including cells that invade the uterus to promote maternal blood flow to the implantation(More)
Polo-like kinases in yeast, flies, and mammals regulate key events in mitosis. Such events include spindle formation at G2/M, the anaphase-promoting complex (APC) at the exit from mitosis, the cleavage structure at cytokinesis, and DNA damage checkpoints in G2/M. Polo-like kinases are distinguished by two C-terminal polo box (pb) motifs, which localize the(More)
A number of placenta-specific genes (e.g., Tpbp, Plac1, Syncytin, and retrotransposon-associated genes such as Peg10, Rtl1, Endothelin B receptor, Insl4, Leptin, Midline1, and Pleiotrophin), enhancer elements (e.g., glycoprotein hormone alpha-subunit) and gene isoforms (e.g., 3betaHSD, Cyp19), as well as placenta-specific members of gene families (e.g.,(More)
The placenta and cardiovascular system are the first organ systems to form during mammalian embryogenesis. We show here that a single gene is critical for development of both. The Hand1 gene, previously called Hxt, eHAND and Thing1, encodes a basic helix-loop-helix (bHLH) transcription factor that starts to be expressed during pre-implantation development.(More)
Mammalian embryos have an intimate relationship with their mothers, particularly with the placental vasculature from which embryos obtain nutrients essential for growth. It is an interesting vascular bed because maternal vessel number and diameter change dramatically during gestation and, in rodents and primates, the terminal blood space becomes lined by(More)