James A. Toombs

Learn More
Numerous prions (infectious proteins) have been identified in yeast that result from the conversion of soluble proteins into beta-sheet-rich amyloid-like protein aggregates. Yeast prion formation is driven primarily by amino acid composition. However, yeast prion domains are generally lacking in the bulky hydrophobic residues most strongly associated with(More)
Prions are important disease agents and epigenetic regulatory elements. Prion formation involves the structural conversion of proteins from a soluble form into an insoluble amyloid form. In many cases, this structural conversion is driven by a glutamine/asparagine (Q/N)-rich prion-forming domain. However, our understanding of the sequence requirements for(More)
Yeast prions provide a powerful model system for examining prion formation and propagation in vivo. Yeast prion formation is driven primarily by amino acid composition, not by primary amino acid sequence. However, although yeast prion domains are consistently glutamine/asparagine-rich, they otherwise vary significantly in their compositions. Therefore,(More)
mRNA sequencing (mRNA-seq) is a commonly used technique to survey gene expression from organisms with fully sequenced genomes. Successful mRNA-seq requires purification of mRNA away from the much more abundant ribosomal RNA, which is typically accomplished by oligo-dT selection. However, mRNAs with short poly-A tails are captured poorly by oligo-dT based(More)
[PSI(+)], the prion form of the yeast Sup35 protein, results from the structural conversion of Sup35 from a soluble form into an infectious amyloid form. The infectivity of prions is thought to result from chaperone-dependent fiber cleavage that breaks large prion fibers into smaller, inheritable propagons. Like the mammalian prion protein PrP, Sup35(More)
Mg(2+)-dependent oligomerization of nucleosomal arrays is correlated with higher order folding transitions that stabilize chromosome structure beyond the 30-nm diameter fiber. In the present studies, we have employed a novel mutagenesis-based approach to identify the macromolecular determinants that control H4 N-terminal domain (NTD) function during(More)
The Saccharomyces cerevisiae prion [URE3] is the infectious amyloid form of the Ure2p protein. [URE3] provides a useful model system for studying amyloid formation and stability in vivo. When grown in the presence of a good nitrogen source, [URE3] cells are able to take up ureidosuccinate, an intermediate in uracil biosynthesis, while cells lacking the(More)
Piwi proteins utilize small RNAs (piRNAs) to recognize target transcripts such as transposable elements (TE). However, extensive piRNA sequence diversity also suggests that Piwi/piRNA complexes interact with many transcripts beyond TEs. To determine Piwi target RNAs, we used ribonucleoprotein-immunoprecipitation (RIP) and cross-linking and(More)
  • 1