James A. Dix

Learn More
We review the effects of molecular crowding on solute diffusion in solution and in cellular aqueous compartments and membranes. Anomalous diffusion, in which mean squared displacement does not increase linearly with time, is predicted in simulations of solute diffusion in media crowded with fixed or mobile obstacles, or when solute diffusion is restricted(More)
Steady-state and time-resolved fluorescence properties of probes incorporated into living cells give information about the microenvironment near the probe. We have extended studies of spatially averaged fluorescence anisotropy (r) by using an epifluorescence microscope, equipped with excitation and emission polarizers and an image analysis system, to map r(More)
Light scattering was used to measure the water and urea permeability of brush border membrane vesicles (BBMV) isolated from rabbit renal cortex. In stop-flow experiments, exposure of BBMV to a 200 mM inwardly directed mannitol gradient gave a monophasic time course of decreasing BBMV volume corresponding to an osmotic water permeability (Pf) of 1.1 +/- 0.1(More)
When human red cells are treated with the mercurial sulfhydryl reagent, p-chloromercuribenzene sulfonate, osmotic water permeability is suppressed and only diffusional water permeability remains (Macey, R.I. and Farmer, R.E.L. (1970) Biochim. Biophys. Acta 211, 104-106). It has been suggested that the route for the remaining water permeation is by diffusion(More)
Radiation inactivation was used to determine the nature and molecular weight of water and urea transporters in the human red cell. Red cells were frozen to -50 degrees C in a cryoprotectant solution, irradiated with 1.5 MeV electrons, thawed, washed and assayed for osmotic water and urea permeability by stopped-flow light scattering. The freezing and(More)
Radiation inactivation was used to determine the nature and molecular weight of water and urea transport pathways in brush border membrane vesicles (BBMV) isolated from rabbit renal cortex. BBMV were frozen to -50 degrees C, irradiated with 1.5 MeV electrons, thawed, and assayed for transport or enzyme activity. The freezing process had no effect on enzyme(More)
The extracellular space (ECS) is the aqueous matrix surrounding cells in solid tissues. The only method to measure ECS volume fraction (alpha) in vivo has been tetramethylammonium iontophoresis, a technically challenging method developed more than 25 years ago. We report a simple, quantitative method to measure alpha by microfiberoptic fluorescence(More)
Transport of solutes through brain involves diffusion and convection. The importance of convective flow in the subarachnoid and paravascular spaces has long been recognized; a recently proposed 'glymphatic' clearance mechanism additionally suggests that aquaporin-4 (AQP4) water channels facilitate convective transport through brain parenchyma. Here, the(More)
Phloretin is an inhibitor of anion exchange and glucose and urea transport in human red cells. Equilibrium binding the kinetic studies indicate that phloretin binds to band 3, a major integral protein of the red cell membrane. Equilibrium phloretin binding has been found to be competitive with the binding of the anion transport inhibitor,(More)