Learn More
We report that adrenocorticotropic hormone (ACTH) protects against osteonecrosis of the femoral head induced by depot methylprednisolone acetate (depomedrol). This therapeutic response likely arises from enhanced osteoblastic support and the stimulation of VEGF by ACTH; the latter is largely responsible for maintaining the fine vascular network that(More)
Postmenopausal osteoporosis, a global public health problem, has for decades been attributed solely to declining estrogen levels. Although FSH levels rise sharply in parallel, a direct effect of FSH on the skeleton has never been explored. We show that FSH is required for hypogonadal bone loss. Neither FSHbeta nor FSH receptor (FSHR) null mice have bone(More)
In nonneuronopathic type 1 Gaucher disease (GD1), mutations in the glucocerebrosidase gene (GBA1) gene result in glucocerebrosidase deficiency and the accumulation of its substrate, glucocerebroside (GL-1), in the lysosomes of mononuclear phagocytes. This prevailing macrophage-centric view, however, does not explain emerging aspects of the disease,(More)
We recently described the direct effects of thyroid-stimulating hormone (TSH) on bone and suggested that the bone loss in hyperthyroidism, hitherto attributed solely to elevated thyroid hormone levels, could at least in part arise from accompanying decrements in serum TSH. Recent studies on both mice and human subjects provide compelling evidence that(More)
The established function of thyroid stimulating hormone (TSH) is to promote thyroid follicle development and hormone secretion. The osteoporosis associated with hyperthyroidism is traditionally viewed as a secondary consequence of altered thyroid function. We provide evidence for direct effects of TSH on both components of skeletal remodeling, osteoblastic(More)
Osteoporosis is less common in individuals with high fat mass. This putative osteoprotection is likely an adaptive mechanism that allows obese individuals to better carry their increased body mass. Recent studies have focused on hormones that link fat to bone. Adipokines, such as leptin, modulate bone cells through both direct and indirect actions, whereas(More)
CD38 is an ectocyclase that converts NAD+ to the Ca2+-releasing second messenger cyclic ADP-ribose (cADPr). Here we report that in addition to CD38 ecto-catalysis, intracellularly expressed CD38 may catalyze NAD+-->cADPr conversion to cause cytosolic Ca2+ release. High levels of CD38 were found in the plasma membranes, endoplasmic reticulum, and nuclear(More)
There is a common mechanism for mechanotransduction in cells, regardless of the cell type. Integrins, interacting with their matrix/environment, mediate increases in intracellular Ca2+ levels and activate MAP kinase cascades to cause ERK1/2 phosphorylation. Phosphorylated ERK1/2 causes the activation of the AP-1 family of transcription factors that are(More)
Declining estrogen production after menopause causes osteoporosis in which the resorption of bone exceeds the increase in bone formation. We recently found that mice deficient in the beta-subunit of follicle-stimulating hormone (FSHbeta) are protected from bone loss despite severe estrogen deficiency. Here we show that FSHbeta-deficient mice have lowered(More)
We describe the effects of the overexpression of noggin, a bone morphogenetic protein (BMP) inhibitor, on osteoblast differentiation and bone formation. Cells of the osteoblast and chondrocyte lineages, as well as bone marrow macrophages, showed intense beta-gal histo- or cytostaining in adult noggin+/- mice that had a LacZ transgene inserted at the site of(More)