Learn More
Matter with a high energy density (>10(5) joules per cm(3)) is prevalent throughout the Universe, being present in all types of stars and towards the centre of the giant planets; it is also relevant for inertial confinement fusion. Its thermodynamic and transport properties are challenging to measure, requiring the creation of sufficiently long-lived(More)
A linear accelerator based source of coherent radiation, FLASH (Free-electron LASer in Hamburg) provides ultra-intense femtosecond radiation pulses at wavelengths from the extreme ultraviolet (XUV; lambda<100nm) to the soft X-ray (SXR; lambda<30nm) spectral regions. 25-fs pulses of 32-nm FLASH radiation were used to determine the ablation parameters of PMMA(More)
The effect of a dense plasma environment on the energy levels of an embedded ion is usually described in terms of the lowering of its continuum level. For strongly coupled plasmas, the phenomenon is intimately related to the equation of state; hence, an accurate treatment is crucial for most astrophysical and inertial-fusion applications, where the case of(More)
We investigated single shot damage of Mo/Si multilayer coatings exposed to the intense fs XUV radiation at the Free-electron LASer facility in Hamburg - FLASH. The interaction process was studied in situ by XUV reflectometry, time resolved optical microscopy, and "post-mortem" by interference-polarizing optical microscopy (with Nomarski contrast), atomic(More)
In this minireview, we provide an account of the current state-of-the-art developments in the area of mono- and binuclear non-heme enzymes (NHFe and NHFe2) and the smaller NHFe(2) synthetic models, mostly from a theoretical and computational perspective. The sheer complexity, and at the same time the beauty, of the NHFe(2) world represents a challenge for(More)
  • 1