Learn More
The Trk family of receptor tyrosine kinases plays a role in synaptic plasticity and in behavioral memory in mammals. Here, we report the discovery of a Trk-like receptor, ApTrkl, in Aplysia. We show that it is expressed in the sensory neurons, the locus for synaptic facilitation, which is a cellular model for memory formation. Serotonin, the facilitatory(More)
KCC2 is a neuron-specific K(+)-Cl(-) cotransporter that is essential for Cl(-) homeostasis and fast inhibitory synaptic transmission in the mature CNS. Despite the critical role of KCC2 in neurons, the mechanisms regulating its function are not understood. Here, we show that KCC2 is critically regulated by the single-pass transmembrane protein neuropilin(More)
The hippocampus plays a central role in memory formation in the mammalian brain. Its ability to encode information is thought to depend on the plasticity of synaptic connections between neurons. In the pyramidal neurons constituting the primary hippocampal output to the cortex, located in area CA1, firing of presynaptic CA3 pyramidal neurons produces(More)
Both hippocampal place fields and medial entorhinal cortex (MEC) grid fields increase in scale along the dorsoventral axis. Because the connections from MEC to hippocampus are topographically organized and divergent, it has been hypothesized that place fields are generated by a Fourier-like summation of inputs over a range of spatial scales. This hypothesis(More)
Anoxic insults cause hyperexcitability and cell death in mammalian neurons. Conversely, in anoxia-tolerant turtle brain, spontaneous electrical activity is suppressed by anoxia (i.e., spike arrest; SA) and cell death does not occur. The mechanism(s) of SA is unknown but likely involves GABAergic synaptic transmission, because GABA concentration increases(More)
Neto2 is a transmembrane protein that interacts with the neuron-specific K(+)-Cl(-) cotransporter (KCC2) in the central nervous system (CNS). Efficient KCC2 transport is essential for setting the neuronal Cl(-) gradient, which is required for fast GABAergic inhibition. Neto2 is required to maintain the normal abundance of KCC2 in neurons, and increases KCC2(More)
An Aplysia Trk-like receptor (ApTrkl) was previously shown to be involved in cell wide long-term facilitation (LTF) and activation of ERK when serotonin (5-HT) is applied to the cell soma. The current study investigated the regulation of ApTrkl by overexpressing the receptor and several variants in Aplysia sensory neuron cultures. Kinase activity-dependent(More)
(80–90%), neutral lipids (10%) and proteins, and is secreted into the alveolar airspace to reduce and vary surface tension in response to changes in lung volume (King, 1982). The most abundant phospholipid (PL) is phosphatidylcholine (PC) (79–85%) (King, 1982), and its disaturated form, dipalmitoylphosphatidylcholine (DPPC), containing two molecules of the(More)
Paired pre- and postsynaptic activity in area CA1 of the hippocampus induces long-term inhibitory synaptic plasticity at GABAergic synapses. This pairing-induced GABAergic plasticity weakens synaptic inhibition due to a depolarization of the reversal potential for GABA(A) receptor-mediated currents (E(GABA)) through a decrease in the function of the(More)
  • 1