Jake K. Aggarwal

Learn More
In this paper, we present a novel approach for human action recognition with histograms of 3D joint locations (HOJ3D) as a compact representation of postures. We extract the 3D skeletal joint locations from Kinect depth maps using Shotton et al.'s method [6]. The HOJ3D computed from the action depth sequences are reprojected using LDA and then clustered(More)
Human activity recognition is an important area of computer vision research. Its applications include surveillance systems, patient monitoring systems, and a variety of systems that involve interactions between persons and electronic devices such as human-computer interfaces. Most of these applications require an automated recognition of high-level(More)
Human motion analysis is receiving increasing attention from computer vision researchers. This interest is motivated by a wide spectrum of applications, such as athletic performance analysis, surveillance, man–machine interfaces, content-based image storage and retrieval, and video conferencing. This paper gives an overview of the various tasks involved in(More)
Human activity recognition is a challenging task, especially when its background is unknown or changing, and when scale or illumination differs in each video. Approaches utilizing spatio-temporal local features have proved that they are able to cope with such difficulties, but they mainly focused on classifying short videos of simple periodic actions. In(More)
Local spatio-temporal interest points (STIPs) and the resulting features from RGB videos have been proven successful at activity recognition that can handle cluttered backgrounds and partial occlusions. In this paper, we propose its counterpart in depth video and show its efficacy on activity recognition. We present a filtering method to extract STIPs from(More)
We introduce a new large-scale video dataset designed to assess the performance of diverse visual event recognition algorithms with a focus on continuous visual event recognition (CVER) in outdoor areas with wide coverage. Previous datasets for action recognition are unrealistic for real-world surveillance because they consist of short clips showing one(More)
Conditional Random Fields (CRFs) can be used as a discriminative approach for simultaneous sequence segmentation and frame labeling. Latent-Dynamic Conditional Random Fields (LDCRFs) incorporates hidden state variables within CRFs which model sub-structure motion patterns and dynamics between labels. Motivated by the success of LDCRFs in gesture(More)
Conventional human detection is mostly done in images taken by visible-light cameras. These methods imitate the detection process that human use. They use features based on gradients, such as histograms of oriented gradients (HOG), or extract interest points in the image, such as scale-invariant feature transform (SIFT), etc. In this paper, we present a(More)
Motion of physical objects in the world is, in general, nonrigid. In robotics and computer vision, the motion of nonrigid objects is of growing interest to researchers from a wide spectrum of disciplines. The nonrigid objects being studied may be generally categorized into three groups according to the degree of deformation of body parts: articulated,(More)