Learn More
For centuries, music has been shared and remembered by two traditions: aural transmission and in the form of written documents normally called musical scores. Many of these scores exist in the form of unpublished manuscripts and hence they are in danger of being lost through the normal ravages of time. To preserve the music some form of typesetting or,(More)
Classification of ordinal data is one of the most important tasks of relation learning. This paper introduces a new machine learning paradigm specifically intended for classification problems where the classes have a natural order. The technique reduces the problem of classifying ordered classes to the standard two-class problem. The introduced method is(More)
Image segmentation plays a major role in a broad range of applications. Evaluating the adequacy of a segmentation algorithm for a given application is a requisite both to allow the appropriate selection of segmentation algorithms as well as to tune their parameters for optimal performance. However, objective segmentation quality evaluation is far from being(More)
Computer aided diagnosis systems with the capability of automatically decide if a patient has or not a pathology and to hold the decision on the dificult cases, are becoming more frequent. The latter are afterwards reviewed by an expert reducing therefore time consuption on behalf of the expert. The number of cases to review depends on the cost of erring(More)
Many musical works produced in the past are still currently available only as original manuscripts or as photocopies. The preservation of these works requires their digitalization and transformation into a machine-readable format. However, and despite the many research activities on optical music recognition (OMR), the results for handwritten musical scores(More)
Many real life problems require the classification of items into naturally ordered classes. These problems are traditionally handled by conventional methods intended for the classification of nominal classes where the order relation is ignored. This paper introduces a new machine learning paradigm intended for multi-class classification problems where the(More)
RATIONALE AND OBJECTIVES Computer-aided detection and diagnosis (CAD) systems have been developed in the past two decades to assist radiologists in the detection and diagnosis of lesions seen on breast imaging exams, thus providing a second opinion. Mammographic databases play an important role in the development of algorithms aiming at the detection and(More)
— The automatic extraction and analysis of visual information is becoming generalised. The first step in this processing chain is usually separating or segmenting the captured visual scene in individual objects. Obtaining a perceptually correct segmentation is however a cumbersome task. Moreover, typical applications relying on object segmentation, such as(More)
This paper addresses the problem of unsupervised speaker change detection. Three systems based on the Bayesian Information Criterion (BIC) are tested. The first system investigates the AudioSpec-trumCentroid and the AudioWaveformEnvelope features, implements a dynamic thresholding followed by a fusion scheme, and finally applies BIC. The second method is a(More)
The aim of this study was to evaluate the factors that determine esthetic outcome after breast cancer conservative treatment, based on a consensual classification obtained with an international consensus panel. Photographs were taken from 120 women submitted to conservative unilateral breast cancer surgery (with or without axillary surgery) and(More)