Jaime Rubio-Martinez

Learn More
The Bcl-2 family of proteins plays an important role in the intrinsic pathway of cell apoptosis. Overexpression of pro-survival members of this family of proteins is often associated with the development of many types of cancer and confers resistance against conventional therapeutic treatments. Accordingly, antagonism of its protective function has emerged(More)
New molecular descriptors, RED (Renyi entropy descriptors), based on the generalized entropies introduced by Renyi are presented. Topological descriptors based on molecular features have proven to be useful for describing molecular profiles. Renyi entropy is used as a variability measure to contract a feature-pair distribution composing the descriptor(More)
We report the discovery of 1-benzyl-2-(3-fluorophenyl)-4-hydroxy-3-(3-phenylpropanoyl)-2H-pyrrole-5-one as a novel non-ligand binding pocket (non-LBP) antagonist of the androgen receptor (AR) through the application of molecular topology techniques. This compound, validated through time-resolved fluorescence resonance energy transfer and fluorescence(More)
Cyclin-dependent kinases CDK4 and CDK6 are essential for the control of the cell cycle through the G1 phase. Aberrant expression of CDK4 and CDK6 is a hallmark of cancer, which would suggest that CDK4 and CDK6 are attractive targets for cancer therapy. Herein, we report that calcein AM (the calcein acetoxymethyl-ester) is a potent specific inhibitor of CDK4(More)
Full Title: In silico investigation of lactone and thiolactone inhibitors in bacterial quorum sensing using molecular modeling Abstract: In the present study, the origin of the anti-quorum sensing (QS) activities of several members of a recently synthesized and in vitro tested class of lactone and thiolactone based inhibitors were computationally(More)
Proteins of the Bcl-2 family regulate apoptosis through the formation of heterodimers between antiapoptotic or pro-survival proteins and proapoptotic or pro-death proteins. Overexpression of antiapoptotic proteins not only contributes to the progression of many cancers, but also confers resistance to the chemo- and radiotherapeutic treatments. It has been(More)
Transketolase is an enzyme involved in a critical step of the non-oxidative branch of the pentose phosphate pathway whose inhibition could lead to new anticancer drugs. Here, we report new human transketolase inhibitors, based on the phenyl urea scaffold, found by applying structure-based virtual screening. These inhibitors are designed to cover a hot spot(More)
Evaluation of binding free energy in receptor-ligand complexes is one of the most important challenges in theoretical drug design. Free energy is directly correlated to the thermodynamic affinity constant, and, as a first step in druglikeness, a lead compound must have this constant in the range of micro- to nanomolar activity. Many efforts have been made(More)
  • 1