Jaime Moreno-García

  • Citations Per Year
Learn More
A proteomic and exometabolomic study was conducted on Saccharomyces cerevisiae flor yeast strain growing under biofilm formation condition (BFC) with ethanol and glycerol as carbon sources and results were compared with those obtained under no biofilm formation condition (NBFC) containing glucose as carbon source. By using modern techniques, OFFGEL(More)
A lack of sugars during the production of biologically aged wines after fermentation of grape must causes flor yeasts to metabolize other carbon molecules formed during fermentation (ethanol and glycerol, mainly). In this work, a proteome analysis involving OFFGEL fractionation prior to LC/MS detection was used to elucidate the carbon metabolism of a flor(More)
Saccharomyces cerevisiae "flor" yeast shows a strong tolerance to high ethanol concentrations and develops a velum (biofilm) on the wine surface after the alcoholic fermentation of grape must. This velum remains along several years during the so called "biological aging" process in the elaboration of some special wines carried out in specific regions around(More)
Nine wines obtained by fermenting Aligoté musts with individual starter cultures of eight Saccharomyces cerevisiae yeast strains and with the indigenous microbiota were compared in terms of their composition in minor volatile aroma compounds. An easy handle methodology Stir-Bar-Sorptive-Adsorption, Gas Chromatography-Mass Spectrometry based, permits the(More)
The most important and negative effect of the global warming for winemakers in warm and sunny regions is the observed lag between industrial and phenolic grape ripeness, so only it is possible to obtain an acceptable colour when the ethanol content of wine is high. By contrast, the actual market trends are to low ethanol content wines. Flor yeast growing a(More)
The most important dogma in white-wine production is the preservation of the wine aroma and the limitation of the oxidative action of oxygen. In contrast, the aging of Sherry and Sherry-like wines is an aerobic process that depends on the oxidative activity of flor strains of Saccharomyces cerevisiae. Under depletion of nitrogen and fermentable carbon(More)
Several Saccharomyces cerevisiae strains (flor yeasts) form a biofilm (flor velum) on the surface of Sherry wines after fermentation, when glucose is depleted. This flor velum is fundamental to biological aging of these particular wines. In this study, we identify abundant proteins in the formation of the biofilm of an industrial flor yeast strain. A(More)
In this data article, an OFFGEL fractionator coupled to LTQ Orbitrap XL MS equipment and a SGD filtering were used to detect in a biofilm-forming flor yeast strain, the maximum possible number of stress proteins under the first stage of a biofilm formation conditions (BFC) and under an initial stage of fermentation used as reference, so-called non-biofilm(More)
  • 1