Learn More
A subset of preBötzinger Complex (preBötC) neurokinin 1 receptor (NK1R) and somatostatin peptide (SST)-expressing neurons are necessary for breathing in adult rats, in vivo. Their developmental origins and relationship to other preBötC glutamatergic neurons are unknown. Here we show, in mice, that the "core" of preBötC SST(+)/NK1R(+)/SST 2a receptor(+)(More)
Nicotine is a neuroteratogen and is the likely link between maternal cigarette smoking during pregnancy and sudden infant death syndrome (SIDS). Osmotic minipumps were implanted in 5-7 d CF1 pregnant mice to deliver nicotine bitartrate (60 mg Kg(-1) day(-1)) or saline (control) solutions for up to 28 d. Prenatal to early postnatal nicotine exposure did not(More)
Unfailing respiration depends on neural mechanisms already present in mammals before birth. Experiments were made to determine how inspiratory and expiratory neurons are grouped in the brainstem of fetal mice. A further aim was to assess whether rhythmicity arises from a single pacemaker or is generated by multiple sites in the brainstem. To measure(More)
1. The aim of the present experiments was to characterize the central chemical drive of fictive respiration in the isolated CNS of the newborn opossum, Monodelphis domestica. This opossum preparation, in contrast to those of neonatal rats and mice, produces respiratory rhythm of high frequency in vitro. 2. Fictive respiration was recorded from C3-C5 ventral(More)
Since its introduction two decades ago, the isolated brain stem-spinal cord preparation of neonatal rodents has been the preferred method used to reveal the mystery underlying the genesis of the respiratory rhythm. Little research using this in vitro approach has focused on the study of the central respiratory chemosensitivity. Some unexpected findings(More)
Aging is the main risk factor for neurodegenerative diseases. In aging, microglia undergoes phenotypic changes compatible with their activation. Glial activation can lead to neuroinflammation, which is increasingly accepted as part of the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD). We hypothesize that in aging, aberrant(More)
Among multiple structural and functional brain changes, aging is accompanied by an increase of inflammatory signaling in the nervous system as well as a dysfunction of the immune system elsewhere. Although the long-held view that aging involves neurocognitive impairment is now dismissed, aging is a major risk factor for neurodegenerative diseases such as(More)
Neural integration is involved in the respiratory central processing of vagal afferent activity originating from lung mechanoreceptors. In the present work it is assumed that not only vagal activity, but also the incoming activities of the other inputs which converge into the "inspiratory off-switch", are processed there by integration. Moreover,(More)
Aberrant handling of Amyloid Precursor Protein (APP) and beta-amyloid (Abeta), glial activation and inflammation are key events in Alzheimer's disease. We set out to determine the role of inflammation on microglial reactivity against APP. We studied microglia-mediated neurotoxicity, uptake and degradation of a biotinylated APP construct (biotin-APP-C-244).(More)
The brains of Alzheimer's disease (AD) patients present activated glial cells, amyloid plaques and dystrophic neurites. The core of amyloid plaques is composed of aggregated amyloid peptide (Abeta), a peptide known to activate glial cells and to have neurotoxic effects. We evaluated the capability of glial cells to mediate Abeta(1-42) cytotoxicity in(More)