Jaiiies A. Gardner

Learn More
We have studied the time-resolved intrinsic tryptophan fluorescence of the lac repressor (a symmetric tetramer containing two tryptophan residues per monomer) and two single-tryptophan mutant repressors obtained by site-directed mutagenesis, lac W201Y and lac W220Y. These mutant repressor proteins have tyrosine substituted for tryptophan at positions 201(More)
Two mutant lactose repressors, each containing a single tryptophan, were generated by site-specific mutagenesis. Tyrosine was substituted for tryptophan to be analogous to amber suppression mutants reported previously (Sommer, H., Lu, P., and Miller, J. H. (1976) J. Biol. Chem. 251, 3774-3779). Unlike the amber suppression mutants, plasmids containing the(More)
Essentially monochromatic radiation with a frequency corresponding to the frequency of the line center of the P(20) line of the 961-cm(-1) CO(2) band was obtained from a CO(2)laser. Using this radiant energy, transmittances of CO(2) samples were measured as various broadening gases were added. Self-broadening coefficients of CO(2) relative to nitrogen,(More)
Energy transfer between the two tryptophan residues in the lactose repressor protein and the fluorescent moiety of the cysteine-specific reagent N-[[(iodoacetyl)amino]ethyl]-5-naphthylamine-1-sulfonate (1,5-IAEDANS) has been examined. Modification of repressor with this compound did not affect operator or inducer binding. 1,5-IAEDANS reacted primarily with(More)
A method for identifying cysteine-containing peptides in proteins is presented using 2-bromoacetamido-4-nitrophenol (BNP) to introduce an easily detectable probe. The formation of a covalent bond between the protein sulfhydryl group and the acetamido moiety of BNP introduces a chromophore with an absorbance maximum at 410 nm. The modified protein can then(More)