Jai S Polepalli

Learn More
The amygdala is a temporal lobe structure that is the center of emotion processing in the mammalian brain. Recent interest in the amygdala arises from its role in processing fear and the relationship of fear to human anxiety. The amygdaloid complex is divided into a number of subnuclei that have extensive intra and extra nuclear connections. In this review(More)
Filamentous ascomycetes contain large numbers of histidine kinases (HK) that belong to eleven classes. Members of class III from different species were previously shown to be involved in osmoregulation and resistance to dicarboximide and phenylpyrrole fungicides. We have inactivated the gene encoding the single group III HK, BOS1, in the economically(More)
Alzheimer's disease (AD) is the most common neurodegenerative disease and the leading cause of dementia in the elderly. Accumulating evidence supports soluble amyloid-β (Aβ) oligomers as the leading candidate for the causative agent in AD and synapses as the primary site of Aβ oligomer action. However, the molecular and cellular mechanisms by which Aβ(More)
The lateral amygdala (LA) plays a key role in emotional learning and is the main site for sensory input into the amygdala. Within the LA, pyramidal neurons comprise the major cell population with plasticity of inputs to these neurons thought to underlie fear learning. Pyramidal neuron activity is tightly controlled by local interneurons, and GABAergic(More)
The genus Pinguicula is one of the three genera of the carnivorous Lentibulariaceae, comprising approximately 80 species. Phylogeny inference using nucleotide sequences of the chloroplast gene matK and the trnK group II intron, as well as a set of 32 morphological characters revealed five well-supported, major lineages within the genus. These lineages(More)
Long-term potentiation (LTP) is a compelling synaptic correlate of learning and memory. LTP induction requires NMDA receptor (NMDAR) activation, which triggers SNARE-dependent exocytosis of AMPA receptors (AMPARs). However, the molecular mechanisms mediating AMPAR exocytosis induced by NMDAR activation remain largely unknown. Here, we show that complexin, a(More)
Active neurons exert a mitogenic effect on normal neural precursor and oligodendroglial precursor cells, the putative cellular origins of high-grade glioma (HGG). By using optogenetic control of cortical neuronal activity in a patient-derived pediatric glioblastoma xenograft model, we demonstrate that active neurons similarly promote HGG proliferation and(More)
Several symptoms associated with chronic pain, including fatigue and depression, are characterized by reduced motivation to initiate or complete goal-directed tasks. However, it is unknown whether maladaptive modifications in neural circuits that regulate motivation occur during chronic pain. Here, we demonstrate that the decreased motivation elicited in(More)
Alzheimer’s disease (AD) is the most common neurodegenerative disease and the leading cause of dementia in the elderly. Accumulating evidence supports soluble amyloid-b (Ab) oligomers as the leading candidate for the causative agent in AD and synapses as the primary site of Ab oligomer action. However, the molecular and cellular mechanisms by which Ab(More)
Neuroligins are postsynaptic cell-adhesion molecules implicated in autism and other neuropsychiatric disorders. Despite extensive work, the role of neuroligins in synapse function and plasticity, especially N-methyl-d-aspartate (NMDA) receptor (NMDAR)-dependent long-term potentiation (LTP), remains unclear. To establish which synaptic functions(More)