Learn More
The use of microsensors for in-field monitoring of environmental parameters is gaining interest due to their advantages over conventional sensors. Among them microsensors based on semiconductor technology offer additional advantages such as small size, robustness, low output impedance and rapid response. Besides, the technology used allows integration of(More)
We present a novel micromotor-based strategy for water-quality testing based on changes in the propulsion behavior of artificial biocatalytic microswimmers in the presence of aquatic pollutants. The new micromotor toxicity testing concept mimics live-fish water testing and relies on the toxin-induced inhibition of the enzyme catalase, responsible for the(More)
Magnetically guided ultrasound-powered nanowire motors, functionalized with bioreceptors and a drug-loaded polymeric segment, are described for "capture and transport" and drug-delivery processes. These high-performance fuel-free motors display advanced capabilities and functionalities, including magnetic guidance, coordinated aligned movement, cargo(More)
New template-based self-propelled gold/nickel/polyaniline/platinum (Au/Ni/PANI/Pt) microtubular engines, functionalized with the Concanavalin A (ConA) lectin bioreceptor, are shown to be extremely useful for the rapid, real-time isolation of Escherichia coli (E. coli) bacteria from fuel-enhanced environmental, food, and clinical samples. These(More)
Highly efficient catalytic microtubular engines are synthesized rapidly and inexpensively using an electrochemical growth of bilayer polyaniline/platinum microtubes within the conically shaped pores of a polycarbonate template membrane. These mass-produced microtubular engines are only 8 μm long, are self-propelled at an ultrafast speed (of over 350 body(More)
We demonstrate the use of artificial nanomachines for effective interaction, capture, transport, and removal of oil droplets. The simple nanomachine-enabled oil collection method is based on modifying microtube engines with a superhydrophobic layer able to adsorb oil by means of its strong adhesion to a long chain of self-assembled monolayers (SAMs) of(More)
Here we describe the first example of using self-propelled antibody-functionalized synthetic catalytic microengines for capturing and transporting target proteins between the different reservoirs of a lab-on-a-chip (LOC) device. A new catalytic polymer/Ni/Pt microtube engine, containing carboxy moieties on its mixed poly(3,4-ethylenedioxythiophene)(More)
We present a new class of ultrasound molecular imaging agents that extend upon the design of micromotors that are designed to move through fluids by catalyzing hydrogen peroxide (H₂O₂) and propelling forward by escaping oxygen microbubbles. Micromotor converters require 62 mm of H₂O₂ to move - 1000-fold higher than is expected in vivo. Here, we aim to prove(More)
We describe here a new strategy for isolating target proteins from complex biological samples based on an aptamer-modified self-propelled microtube engine. For this purpose, a thiolated thrombin or a mixed thrombin-ATP aptamer (prehybridized with a thiolated short DNA) was coassembled with mercaptohexanol onto the gold surface of these microtube engines.(More)
We demonstrate an attractive nanomachine "capture and transport" target isolation strategy based on molecularly imprinted polymers (MIPs). MIP-based catalytic microtubular engines are prepared by electropolymerization of the outer polymeric layer in the presence of the target analyte (template). Tailor-made selective artificial recognition sites are thus(More)