Learn More
The use of microsensors for in-field monitoring of environmental parameters is gaining interest due to their advantages over conventional sensors. Among them microsensors based on semiconductor technology offer additional advantages such as small size, robustness, low output impedance and rapid response. Besides, the technology used allows integration of(More)
Here we describe the first example of using self-propelled antibody-functionalized synthetic catalytic microengines for capturing and transporting target proteins between the different reservoirs of a lab-on-a-chip (LOC) device. A new catalytic polymer/Ni/Pt microtube engine, containing carboxy moieties on its mixed poly(3,4-ethylenedioxythiophene)(More)
The particular analytical performance of ultramicroelectrode arrays (UMEAs) has attracted a high interest by the research community and has led to the development of a variety of electroanalytical applications. UMEA-based approaches have demonstrated to be powerful, simple, rapid and cost-effective analytical tools for environmental analysis compared to(More)
This work reports on the coupling of antibody-functionalized micromotors and microwire-tagged proteins for rapid and multiplexed immunoassays. While micromotor-induced mixing accelerates the immunoreaction, tagging the proteins with microscopic particles of different sizes and shapes allows for their multiplexed discrimination, alerting of the presence of a(More)
Template-electrodeposited polymer/Pt microtube engines display efficient propulsion in a wide range of real-life samples ranging from seawater to human serum. Remarkably high speeds are observed in fuel-enhanced raw serum, apple juice, seawater, lake and river water samples. Our results indicate that polymer-based microengines hold considerable promise for(More)
  • 1