Jagdish Singh

Manoj Lakhotia4
Hans Raj Pahadiya3
Amit Modgil2
Buddhadev Layek2
4Manoj Lakhotia
3Hans Raj Pahadiya
2Amit Modgil
2Buddhadev Layek
Learn More
To investigate the influence of different cell penetrating peptides (CPPs-TAT, Penetratin and Mastoparan), on the transport of doxorubicin encapsulating transferrin (Tf)-liposomes across brain endothelial barrier, in vitro and in vivo. The cellular uptake of dual-functionalized, (Tf-CPP), liposomes into various tumor cells was assessed using HPLC. The(More)
Nanotechnology has tremendously influenced gene therapy research in recent years. Nanometer-size systems have been extensively investigated for delivering genes at both local and systemic levels. These systems offer several advantages in terms of tissue penetrability, cellular uptake, systemic circulation, and cell targeting as compared to larger systems.(More)
The membrane bilayer delimits the interior of individual cells and provides them with the ability to survive and function properly. However, the crossing of cellular membranes constitutes the principal impediment to gaining entry into cells, and the potential therapeutic application of many drugs is predominantly dependent on the development of delivery(More)
Chronic hepatitis B virus (HBV) infection remains a major health problem worldwide. Because current anti-HBV treatments are only virostatic, there is an urgent need for development of alternative antiviral approaches. In this context, cell-penetrating peptides (CPPs) and cationic polymers, such as chitosan (CS), appear of particular interest as nonviral(More)
To evaluate the in vivo transfection efficiency of N-acyl derivatives of low-molecular weight chitosan (LMWC) to deliver pVIVO2-mIL4-mIL10 plasmid encoding interleukin-4 (IL-4) and interleukin-10 (IL-10) in multiple, low-dose streptozotocin induced diabetic mouse model. N-acyl LMWC nanomicelles were characterized for size and charge. The(More)
The challenge of effectively delivering therapeutic agents to brain has led to an entire field of active research devoted to overcome the blood brain barrier (BBB) and efficiently deliver drugs to brain. This review focusses on exploring the facets of a novel platform designed for the delivery of drugs to brain. The platform was constructed based on the(More)
Over the last two decades, the potential usage of cell-penetrating peptides (CPPs) for the intracellular delivery of various molecules has prompted the identification of novel peptidic identities. However, cytotoxic effects and unpredicted immunological responses have often limited the use of various CPP sequences in the clinic. To overcome these issues,(More)
Gene therapy is an emerging therapeutic strategy for the cure or treatment of a spectrum of genetic disorders. Nevertheless, advances in gene therapy are immensely reliant upon design of an efficient gene carrier that can deliver genetic cargoes into the desired cell populations. Among various nonviral gene delivery systems, chitosan-based carriers have(More)
Protein transduction using cell-penetrating peptides (CPPs) is useful for the delivery of large protein molecules, including some transcription factors. This method is safer than gene transfection methods with a viral vector because there is no risk of genomic integration of the exogenous DNA. Recently, this method was reported as a means for the induction(More)