Learn More
Using lysozyme as a model protein, this study investigated protein stability, protein--polymer interaction in different release media and their influence on protein release profile and in vitro--in vivo correlation. Lysozyme was microencapsulated into PLGA 50:50 by a double emulsion--solvent extraction/evaporation method. Protein stability, protein--PLGA(More)
The purpose of this study was to synthesize and characterize biodegradable and thermosensitive triblock copolymers for delivering protein at controlled rate in biologically active form for longer duration of time. A series of thermosensitive triblock copolymers with different block lengths (PLGA-PEG-PLGA) were synthesized by ring-opening polymerization of(More)
The potential of poly 1,3-bis-(p-carboxyphenoxy) propane-co-sebacic acid (p(CPP:SA)) microspheres was investigated for controlled delivery of basal insulin. CPP:SA copolymers with molar compositions of 20:80, 40:60, and 50:50 were synthesized, characterized, and used in the fabrication of microspheres by water-in-oil-in-water double emulsion solvent(More)
The purpose of this study was to develop a single-dose insulin delivery system based on poly (lactide-co-glycolide) (PLGA) microspheres to provide basal insulin level for a prolonged period. Insulin-loaded PLGA microspheres were prepared by water-in-oil-in-water double emulsion (batch A) and solid-in-oil-in-water emulsion (batch B) methods. Microspheres(More)
A study of aqueous solutions of chromium using single and double pulse laser-induced breakdown spectroscopy (LIBS) is presented. Three atomic emission lines show enhancement in emission under dual pulse LIBS excitation. The temporal evolution of line emission indicates that a shock wave front produced by the first laser pulse plays an important role in(More)
PURPOSE The purpose of this study was to develop a biodegradable triblock copolymer, mPEG-PLGA-mPEG-based delivery system for long-term controlled release of salmon calcitonin (sCT) after single subcutaneous injection. METHODS The delivery system was prepared by dissolving sCT into polymer solution. In vitro release of sCT from the delivery systems was(More)
To develop a safe, effective, and biocompatible gene delivery vector, a series of hydrophobic amino acid grafted chitosan (AGC) derivatives were synthesized by carbodiimide mediated coupling reaction. Chemical characterization of AGC polymers was performed by NMR and elemental analysis. AGC polymers demonstrated excellent blood compatibility and cell(More)