Learn More
Recently, Semi-Supervised learning algorithms such as co-training are used in many domains. In co-training, two classifiers based on different subsets of the features or on different learning algorithms are trained in parallel and unlabeled data that are classified differently by the classifiers but for which one classifier has large confidence are labeled(More)
In Collaborative Network (CN) environments, creation of collective understanding about both the aimed outcome and the procedure for achieving it by its members is the antecedent to any successful co-working and co-development. While a part of the common CN knowledge is pre-existing to its establishment, once the collaboration activities begin the emergent(More)
We present an algorithm for multiclass Semi-Supervised learning which is learning from a limited amount of labeled data and plenty of unlabeled data. Existing semi-supervised algorithms use approaches such as one-versus-all to convert the multiclass problem to several binary classification problems which is not optimal. We propose a multiclass(More)
Feature selection is widely used as the first stage of classification task to reduce the dimension of problem, decrease noise, improve speed and relieve memory constraints by the elimination of irrelevant or redundant features. One approach in the feature selection area is employing population-based optimization algorithms such as particle swarm(More)
In this paper, we consider the multiclass semi-supervised classification problem. A boosting algorithm is proposed to solve the multiclass problem directly. The proposed multiclass approach uses a new multiclass loss function, which includes two terms. The first term is the cost of the multiclass margin and the second term is a regularization term on(More)
In this paper we present a new Multiclass semi-supervised learning algorithm that uses a base classifier in combination with a similarity function applied to all data to find a classifier that maximizes the margin and consistency over all data. A novel multiclass loss function is presented and used to derive the algorithm. We apply the algorithm to animal(More)