Learn More
Multiplex automated genome engineering (MAGE) uses short oligonucleotides to scarlessly modify genomes; however, insertions >10 bases are still inefficient but can be improved substantially by selection of highly modified chromosomes. Here we describe 'coselection' MAGE (CoS-MAGE) to optimize biosynthesis of aromatic amino acid derivatives by(More)
Genome engineering can be used to produce bacterial strains with a wide range of desired phenotypes. However, the incorporation of gene-sized DNA fragments is often challenging due to the intricacy of the procedure, off-target effects, and low insertion efficiency. Here we report a genome engineering method enabling the continuous incorporation of(More)
Genome engineering can be used to produce bacterial strains with a wide range of desired phenotypes. However, the incorporation of gene-sized DNA fragments is often challenging due to the intricacy of the procedure, off-target effects, and low insertion efficiency. Here we report a genome engineering method enabling the continuous incorporation of(More)
  • 1