Jaehwan Jeong

Learn More
Multiplex automated genome engineering (MAGE) uses short oligonucleotides to scarlessly modify genomes; however, insertions >10 bases are still inefficient but can be improved substantially by selection of highly modified chromosomes. Here we describe 'coselection' MAGE (CoS-MAGE) to optimize biosynthesis of aromatic amino acid derivatives by(More)
Genome engineering has been developed to create useful strains for biological studies and industrial uses. However, a continuous challenge remained in the field: technical limitations in high-throughput screening and precise manipulation of strains. Today, technical improvements have made genome engineering more rapid and efficient. This review introduces(More)
High-cost of oligonucleotides is one of the major problems to low-cost gene synthesis. Although DNA oligonucleotides from cleavable DNA microchips has been adopted for the low-cost gene synthesis, construction of DNA molecules larger than 1 kb has been largely hampered due to the difficulties of DNA assembly associated with the negligible quantity of chip(More)
Genome engineering can be used to produce bacterial strains with a wide range of desired phenotypes. However, the incorporation of gene-sized DNA fragments is often challenging due to the intricacy of the procedure, off-target effects, and low insertion efficiency. Here we report a genome engineering method enabling the continuous incorporation of(More)
In this paper, we study a joint beam and user scheduling problem in a cooperative cellular network utilizing orthogonal random beamforming technique. This paper aims to minimize total base stations' average energy expenditure while ensuring finite service time for all traffic arrivals in a given set. We leverage Lyapunov optimization technique to transform(More)
  • 1