Jaebum Park

Learn More
Humans are known to show anticipatory adjustments in the grip force prior to a self-generated or predictable action or perturbation applied to a hand-held object. We investigated whether humans can also adjust covariation of individual finger forces (multi-finger synergies) prior to self-triggered perturbations. To address this issue, we studied adjustments(More)
This study investigated the phenomena of finger enslaving, involuntary finger actions by non-intended fingers, and force deficit, smaller maximum force by all four fingers than the sum of individual finger maximum forces in individuals with cervical spinal cord injuries (SCI). A total of 16 subjects participated in this study: 8 with a cervical spinal cord(More)
We studied the finger interactions during maximum voluntary force (MVF) production in flexion and extension in children and adults. The goal of this study was to investigate the age-related changes and flexion-extension differences of MVF and finger interaction indices, such as finger inter-dependency (force enslaving (FE): unintended finger forces produced(More)
Two approaches to motor redundancy, optimization and the principle of abundance, seem incompatible. The former predicts a single, optimal solution for each task, while the latter assumes that families of equivalent solutions are used. We explored the two approaches using a four-finger pressing task with the requirement to produce certain combination of(More)
This study investigated synergistic actions of hand-pen contact forces during circle drawing tasks in three-dimensional (3D) space. Twenty-four right-handed participants drew thirty concentric circles in the counterclockwise (CCW) and clockwise (CW) directions. Three-dimensional forces acting on an instrumented pen as well as 3D linear and angular positions(More)
This paper describes the creation of a Kinetic Pen capable of measuring the six-component force and torque that each of four individual contacts applies to the pen during writing. This was done by staggering the mounting of the four sensors along the long axis of the pen and having an extended arm run from the sensor to the grip site, preventing a(More)
A recently developed method of analytical inverse optimization (ANIO) was used to compute cost functions based on sets of experimental observations in 4-finger pressing tasks with accurate total force and moment production. In different series, feedback on total force and moment was provided using the index finger force at its value, doubled, or halved.(More)
We used two methods, analytical inverse optimization (ANIO) and uncontrolled manifold (UCM) analysis of synergies, to explore age-related changes in finger coordination during accurate force and moment of force production tasks. The two methods address two aspects of the control of redundant systems: Finding an optimal solution (an optimal sharing pattern)(More)
This study aimed to continue our characterization of finger strength and multi-finger interactions across the lifespan to include those in their 60s and older. Building on our previous study of children, we examined young and elderly adults during isometric finger flexion and extension tasks. Sixteen young and 16 elderly, gender-matched participants(More)
We studied characteristics of digit action and their co-variation patterns across trials (prehension synergies) during static holding of an object while the external torque could change slowly and smoothly. The subjects held in the air an instrumented handle with an attachment that allowed a smooth change in the external torque over about 12 s; the load was(More)